Colonization of mudflat substrate by microarthropods: the role of distance, inundation frequency and body size

Author:

Haque Md EkramulORCID,Rinke MariaORCID,Chen Ting-WenORCID,Maraun MarkORCID,Scheu StefanORCID

Abstract

AbstractSalt marshes represent a unique ecosystem at the marine-terrestrial boundary of shallow protected coastlines. Microarthropods form an essential component of soil food webs, but how they colonize new intertidal habitats is little understood. By establishing two experimental systems without animals, we investigated microarthropod colonization (1) at the seashore from the pioneer zone to the lower and upper salt marsh and (2) at the same tidal height on artificial islands 500 m from the seashore. Potential source populations of microarthropods in the respective zones were also investigated. Colonization of microarthropods after 5 years was consistently faster on the seashore than on the artificial islands. Collembola and Mesostigmata colonized all the zones both on the seashore and on the artificial islands, with colonization being faster in the upper salt marsh and in the pioneer zone than in the lower salt marsh. Oribatida colonized the new habitats on the seashore, but only little on the artificial islands. Variations in species composition were more pronounced between salt marsh zones than between experimental systems, indicating that local environmental conditions (i.e., inundation frequency) are more important for the assembly of microarthropod communities than the distance from source populations (i.e., dispersal processes). Variations in community body size of Oribatida and Mesostigmata indicated environmental filtering of traits, with smaller species suffering from frequent inundations. Notably, Mesostigmata most successfully colonized the new habitats across salt marsh zones on both systems. Overall, the results document major mechanisms of colonization of intertidal habitats by microarthropods with different life histories and feeding strategies.

Funder

Deutsche Forschungsgemeinschaft

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3