A fast and effective approach for microstrip filter design using GA and TL-model

Author:

Singh AdityaORCID,Ritika ORCID,Jangid AshokORCID

Abstract

AbstractMicrowaves and RF technology and their components like filters, antennas, etc. are commonly used in wireless networking and communication systems, wireless security systems, radar systems, and environmental remote sensing. In this paper, a fast and effective procedure has been proposed for microstrip filter design using a genetic algorithm (GA) with a transmission line model (TL). GA is modified to be highly efficient and accurate by encoding the topology. For the fixed filter topology, the electrical parameters of the filter are encoded in a single chromosome. To make the proposed procedure fast and effective, a transmission line model has been employed to compute the fitness value in GA. To demonstrate the effectiveness of the proposed procedure, a wideband second-order bandpass filter with a center frequency of 2.3 GHz is examined with a pair of short-circuited stubs and a pair of open-circuited stubs. The optimized design is validated using full-wave methods (MoM and EM simulator CST). The results show a low insertion loss of 0.1 dB and return loss better than 30 dB and a wide bandwidth of 46.95% with − 3 dB cutoff frequencies at 1.76 GHz and 2.84 GHz.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3