NeVer2: learning and verification of neural networks

Author:

Demarchi StefanoORCID,Guidotti DarioORCID,Pulina LucaORCID,Tacchella ArmandoORCID

Abstract

AbstractNeVer2 is an open-source, cross-platform tool aimed at designing, training, and verifying neural networks. It seamlessly integrates popular learning libraries with our verification backend, offering their functionalities via a graphical interface. Users can design the structure of a neural network by intuitively arranging blocks on a canvas. Subsequently, network training involves specifying dataset sources and hyperparameters through dialog boxes. After training, the verification process entails two steps: (i) incorporating input preconditions and output postconditions via dedicated blocks, and (ii) initiating verification with a simple “push-button” action. To our knowledge, there is currently no other publicly available tool that encompasses all these features. In this paper, we present a comprehensive description of NeVer2, illustrating its complete integration of design, training, and verification through examples. Additionally, we conduct experimental analyses on various verification benchmarks to illustrate the trade-off between completeness and computability using different algorithms. We also include a comparison with state-of-the-art tools such as $$\alpha $$ α ,$$\beta $$ β -CROWN and NNV for reference.

Funder

Fondazione di Sardegna

Università degli Studi di Sassari

Publisher

Springer Science and Business Media LLC

Reference70 articles.

1. Abadi M, Barham P, Chen J, et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. USENIX Association, pp 265–283

2. Al-Waisy AS, Al-Fahdawi S, Mohammed MA et al (2023) Covid-chexnet: hybrid deep learning framework for identifying COVID-19 virus in chest x-rays images. Soft Comput 27(5):2657–2672. https://doi.org/10.1007/s00500-020-05424-3

3. Bak S (2021) nnenum: Verification of relu neural networks with optimized abstraction refinement. In: NASA Formal Methods - 13th International Symposium, NFM 2021, Virtual Event, May 24-28, 2021. Proceedings, Lecture Notes in Computer Science, vol 12673. Springer, pp 19–36. https://doi.org/10.1007/978-3-030-76384-8_2

4. Bak S, Duggirala PS (2017) Simulation-equivalent reachability of large linear systems with inputs. In: Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017. Proceedings, Part I, Lecture Notes in Computer Science, vol 10426. Springer, pp 401–420. https://doi.org/10.1007/978-3-319-63387-9_20

5. Bak S, Tran H, Hobbs K, et al (2020) Improved geometric path enumeration for verifying relu neural networks. In: Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I, Lecture Notes in Computer Science, vol 12224. Springer, pp 66–96. https://doi.org/10.1007/978-3-030-53288-8_4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3