Image analysis for bright-field HER2 in situ hybridization: validation for clinical use

Author:

Shi Ruoyu,Pinto João Correia,Rienda Ivan,Caie Peter,Eloy Catarina,Polónia AntónioORCID

Abstract

AbstractThe aim of the present study was to develop and validate a quantitative image analysis (IA) algorithm to aid pathologists in assessing bright-field HER2 in situ hybridization (ISH) tests in solid cancers. A cohort of 80 sequential cases (40 HER2-negative and 40 HER2-positive) were evaluated for HER2 gene amplification with bright-field ISH. We developed an IA algorithm using the ISH Module from HALO software to automatically quantify HER2 and CEP17 copy numbers per cell as well as the HER2/CEP17 ratio. We observed a high correlation of HER2/CEP17 ratio, an average of HER2 and CEP17 copy number per cell between visual and IA quantification (Pearson’s correlation coefficient of 0.842, 0.916, and 0.765, respectively). IA was able to count from 124 cells to 47,044 cells (median of 5565 cells). The margin of error for the visual quantification of the HER2/CEP17 ratio and of the average of HER2 copy number per cell decreased from a median of 0.23 to 0.02 and from a median of 0.49 to 0.04, respectively, in IA. Curve estimation regression models showed that a minimum of 469 or 953 invasive cancer cells per case is needed to reach an average margin of error below 0.1 for the HER2/CEP17 ratio or for the average of HER2 copy number per cell, respectively. Lastly, on average, a case took 212.1 s to execute the IA, which means that it evaluates about 130 cells/s and requires 6.7 s/mm2. The concordance of the IA software with the visual scoring was 95%, with a sensitivity of 90% and a specificity of 100%. All four discordant cases were able to achieve concordant results after the region of interest adjustment. In conclusion, this validation study underscores the usefulness of IA in HER2 ISH testing, displaying excellent concordance with visual scoring and significantly reducing margins of error.

Funder

Universidade do Porto

Publisher

Springer Science and Business Media LLC

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3