Hypoxia-induced autophagy in triple negative breast cancer: association with prognostic variables, patients’ survival and response to neoadjuvant chemotherapy

Author:

El-Guindy Dina M.ORCID,Ibrahim Fatma MKh,Ali Dina A.,El-Horany Hemat El-Sayed,Sabry Nesreen M.,Elkholy Rasha A.,Mansour Wael,Helal Duaa S.

Abstract

Abstract Autophagy is a cellular response to diverse stresses within tumor microenvironment (TME) such as hypoxia. It enhances cell survival and triggers resistance to therapy. This study investigated the prognostic importance of HIF-1α and miR-210 in triple negative breast cancer (TNBC). Also, we studied the relation between beclin-1 and Bcl-2 and their prognostic relevance in triple negative breast cancer. Furthermore, the involvement of hypoxia-related markers, beclin-1 and Bcl-2 in mediating resistance to neoadjuvant chemotherapy (NACT) in TNBC was evaluated. Immunohistochemistry was performed to evaluate HIF-1α, beclin-1 and Bcl-2 expression whereas, miR-210 mRNA was detected by quantitative reverse transcription PCR (q-PCR) in 60 TNBC patients. High HIF-1α expression was related to larger tumors, grade III cases, positive lymphovascular invasion, advanced stage, high Ki-67 and poor overall survival (OS). High miR-210 and negative Bcl-2 expression were related to nodal metastasis, advanced stage and poor OS. High beclin-1 was associated with grade III, nodal metastasis, advanced stage and poor OS. Also, high beclin-1 and negative Bcl-2 were significantly associated with high HIF-1α and high miR-210. High HIF- 1α, miR-210 and beclin-1 as well as negative Bcl-2 were inversely related to pathologic complete response following NACT. High beclin-1 and lack of Bcl-2 are significantly related to hypoxic TME in TNBC. High HIF-1α, miR-210, and beclin-1 expression together with lack of Bcl-2 are significantly associated with poor prognosis as well as poor response to NACT. HIF-1α and miR-210 could accurately predict response to NACT in TNBC.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3