Assessing the prognostic value of tumor-infiltrating CD57+ cells in advanced stage head and neck cancer using QuPath digital image analysis

Author:

de Ruiter Emma J.ORCID,Bisheshar Sangeeta K.,de Roest Reinout H.,Wesseling Frederik W. R.,Hoebers Frank J. P.,van den Hout Mari F. C. M.,Leemans C. René,Brakenhoff Ruud H.,de Bree Remco,Terhaard Chris H. J.,Willems Stefan M.

Abstract

AbstractThis study aimed to assess the prognostic value of intratumoral CD57+ cells in head and neck squamous cell carcinoma (HNSCC) and to examine the reproducibility of these analyses using QuPath. Pretreatment biopsies of 159 patients with HPV-negative, stage III/IV HNSCC treated with chemoradiotherapy were immunohistochemically stained for CD57. The number of CD57+ cells per mm2 tumor epithelium was quantified by two independent observers and by QuPath, software for digital pathology image analysis. Concordance between the observers and QuPath was assessed by intraclass correlation coefficients (ICC). The correlation between CD57 and clinicopathological characteristics was assessed; associations with clinical outcome were estimated using Cox proportional hazard analysis and visualized using Kaplan-Meier curves. The patient cohort had a 3-year OS of 65.8% with a median follow-up of 54 months. The number of CD57+ cells/mm2 tumor tissue did not correlate to OS, DFS, or LRC. N stage predicted prognosis (OS: HR 0.43, p = 0.008; DFS: HR 0.41, p = 0.003; LRC: HR 0.24, p = 0.007), as did WHO performance state (OS: HR 0.48, p = 0.028; LRC: 0.33, p = 0.039). Quantification by QuPath showed moderate to good concordance with two human observers (ICCs 0.836, CI 0.805–0.863, and 0.741, CI 0.692–0.783, respectively). In conclusion, the presence of CD57+ TILs did not correlate to prognosis in advanced stage, HPV-negative HNSCC patients treated with chemoradiotherapy. Substantial concordance between human observers and QuPath was found, confirming a promising future role for digital, algorithm driven image analysis.

Funder

KWF Kankerbestrijding

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3