How Active is Active Learning: Value Function Method Versus an Approximation Method

Author:

Amman Hans M.ORCID,Tucci Marco P.

Abstract

AbstractIn a previous paper Amman et al. (Macroecon Dyn, 2018) compare the two dominant approaches for solving models with optimal experimentation (also called active learning), i.e. the value function and the approximation method. By using the same model and dataset as in Beck and Wieland (J Econ Dyn Control 26:1359–1377, 2002), they find that the approximation method produces solutions close to those generated by the value function approach and identify some elements of the model specifications which affect the difference between the two solutions. They conclude that differences are small when the effects of learning are limited. However the dataset used in the experiment describes a situation where the controller is dealing with a nonstationary process and there is no penalty on the control. The goal of this paper is to see if their conclusions hold in the more commonly studied case of a controller facing a stationary process and a positive penalty on the control.

Funder

University of Amsterdam

Publisher

Springer Science and Business Media LLC

Reference36 articles.

1. Aghion, P., Bolton, P., Harris, C., & Jullien, B. (1991). Optimal learning by experimentation. Review of Economic Studies, 58, 621–654.

2. Amman, H., & Tucci, M. (2017). The dual approach in an infinite horizon model. Quaderni del Dipartimento di Economia Politica 766. Università di Siena, Siena, Italy.

3. Amman, H. M. (1996). Numerical methods for linear-quadratic models. In H. M. Amman, D. A. Kendrick, & J. Rust (Eds.), Handbook of computational economics of handbook in economics (Vol. 13, pp. 579–618). Amsterdam: North-Holland Publishers.

4. Amman, H. M., Kendrick, D. A., & Tucci, M. P. (2018). Approximating the value function for optimal experimentation. Macroeconomic Dynamics (forthcoming).

5. Amman, H. M., & Neudecker, H. (1997). Numerical solution methods of the algebraic matrix riccati equation. Journal of Economic Dynamics and Control, 21, 363–370.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3