Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks

Author:

Berra Silvia,La Torraca Alessandro,Benvenuto Federico,Sommariva SaraORCID

Abstract

AbstractIn this work, we present a fast, globally convergent, iterative algorithm for computing the asymptotically stable states of nonlinear large-scale systems of quadratic autonomous ordinary differential equations (ODE) modeling, e.g., the dynamic of complex chemical reaction networks. Toward this aim, we reformulate the problem as a box-constrained optimization problem where the roots of a set of nonlinear equations need to be determined. Then, we propose to use a projected Newton’s approach combined with a gradient descent algorithm so that every limit point of the sequence generated by the overall algorithm is a stationary point. More importantly, we suggest replacing the standard orthogonal projector with a novel operator that ensures the final solution to satisfy the box constraints while lowering the probability that the intermediate points reached at each iteration belong to the boundary of the box where the Jacobian of the objective function may be singular. The effectiveness of the proposed approach is shown in a practical scenario concerning a chemical reaction network modeling the signaling network of colorectal cancer cells. Specifically, in this scenario the proposed algorithm is proved to be faster and more accurate than a classical dynamical approach where the asymptotically stable states are computed as the limit points of the flux of the Cauchy problem associated with the ODE system.

Funder

GNCS-INDAM

Roche Italia

Ministero della Salute

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3