Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci

Author:

Ghaffar AmmarahORCID,Nyholt Dale R.,

Abstract

AbstractMigraine—a painful, throbbing headache disorder—is the most common complex brain disorder, yet its molecular mechanisms remain unclear. Genome-wide association studies (GWAS) have proven successful in identifying migraine risk loci; however, much work remains to identify the causal variants and genes. In this paper, we compared three transcriptome-wide association study (TWAS) imputation models—MASHR, elastic net, and SMultiXcan—to characterise established genome-wide significant (GWS) migraine GWAS risk loci, and to identify putative novel migraine risk gene loci. We compared the standard TWAS approach of analysing 49 GTEx tissues with Bonferroni correction for testing all genes present across all tissues (Bonferroni), to TWAS in five tissues estimated to be relevant to migraine, and TWAS with Bonferroni correction that took into account the correlation between eQTLs within each tissue (Bonferroni-matSpD). Elastic net models performed in all 49 GTEx tissues using Bonferroni-matSpD characterised the highest number of established migraine GWAS risk loci (n = 20) with GWS TWAS genes having colocalisation (PP4 > 0.5) with an eQTL. SMultiXcan in all 49 GTEx tissues identified the highest number of putative novel migraine risk genes (n = 28) with GWS differential expression at 20 non-GWS GWAS loci. Nine of these putative novel migraine risk genes were later found to be at and in linkage disequilibrium with true (GWS) migraine risk loci in a recent, more powerful migraine GWAS. Across all TWAS approaches, a total of 62 putative novel migraine risk genes were identified at 32 independent genomic loci. Of these 32 loci, 21 were true risk loci in the recent, more powerful migraine GWAS. Our results provide important guidance on the selection, use, and utility of imputation-based TWAS approaches to characterise established GWAS risk loci and identify novel risk gene loci.

Funder

Queensland University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3