1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
2. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 104, 9943–9948 (2007)
3. Chan, S., Elsheikh, A.: A machine learning approach for efficient uncertainty quantification using multiscale methods. J. Comput. Phys. 354, 494–511 (2018)
4. Chen, Z., Churchill, V., Wu, K., Xiu, D.: Deep neural network modeling of unknown partial differential equations in nodal space. J. Comput. Phys. 449, 110782 (2022)
5. Chen, Z., Xiu, D.: On generalized residual network for deep learning of unknown dynamical systems. J. Comput. Phys. 438, 110362 (2021)