Skip to main content

Advertisement

Log in

Homodimeric peptide radiotracer [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 imaging of cervical cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Vascular endothelial growth factor receptor 3 (VEGFR-3) plays a critical role in tumor lymphangiogenesis and metastasis, holding promise as a promising therapeutic target for solid tumors. TMVP1 (LARGR) is a 5-amino acid peptide previously identified in our laboratory from bacterial peptide display system that specifically targets VEGFR-3. Radiolabeled TMVP1 can be used for non-invasive imaging of VEGFR-3 expressing tumors. Homodimeric peptides have better targeting ability than monomeric peptides, and it is worth exploring whether homodimers of TMVP1 ((TMVP1)2) can achieve better imaging effects. This study aimed to explore the peptide properties and tumor assessment value of [68Ga]Ga-labeled (TMVP1)2.

Methods

In this study, we developed a TMVP1 homodimer that was conjugated with 1,4,7-triazacyclononane-N, N′, N″-triacetic acid (NOTA) via tetraethyleneglycol (PEG4) and triglyicine (Gly3) spacer, and labeled with 68Ga, to construct [68Ga]Ga-NOTA-(TMVP1)2. Binding of VEGFR-3 by TMVP1 and (TMVP1)2, respectively, was modeled by molecular docking. The affinity of [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 and its ability to bind to cells were evaluated. MicroPET imaging and biodistribution studies of [68Ga]Ga-NOTA-(TMVP1)2 were performed in subcutaneous C33A cervical cancer xenografts. Five healthy volunteers and eight patients with cervical cancer underwent whole-body PET/CT acquisition 30–45 min after intravenous injection of [68Ga]Ga-NOTA-(TMVP1)2.

Results

Both molecular docking and cellular experiments showed that homodimeric TMVP1 had a higher affinity for VEGFR-3 than monomeric TMVP1. [68Ga]Ga-NOTA-(TMVP1)2 was excreted mainly through the renal route and partly through the liver route. In mice bearing C33A xenografts, [68Ga]Ga-NOTA-(TMVP1)2 specifically localized in the tumor (2.32 ± 0.10% ID/g). Pretreatment of C33A xenograft mice with the unlabeled peptide NOTA-(TMVP1)2 reduced the enrichment of [68Ga]Ga-NOTA-(TMVP1)2 in tumors (0.58 ± 0.01% ID/g). [68Ga]Ga-NOTA-(TMVP1)2 proved to be safe in all healthy volunteers and recruited patients, with no side effects or allergies noted. In cervical cancer patients, a majority of the [18F]-FDG identified lesions (18/22, 81.8%) showed moderate to high signal intensity on [68Ga]Ga-NOTA-(TMVP1)2. SUVmax and SUVmean were 2.32 ± 0.77 and 1.61 ± 0.48, respectively. With normal muscle (gluteus maximus) as background, tumor-to-background ratios were 3.49 ± 1.32 and 3.95 ± 1.64 based on SUVmax and SUVmean, respectively.

Conclusion

The favorable characterizations of [68Ga]Ga-NOTA-(TMVP1)2 such as convenient synthesis, high specific activity, and high tumor uptake enable the evaluation of VEGFR-3 in cervical cancer patients and warrant further clinical studies.

Trial registration

ChiCTR-DOD-17012458. Registered August 23, 2017 (retrospectively registered).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author, upon reasonable request.

References

  1. Renyi-Vamos F, Tovari J, Fillinger J, Timar J, Paku S, Kenessey I, et al. Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res. 2005;11:7344–53. https://doi.org/10.1158/1078-0432.Ccr-05-1077.

    Article  CAS  PubMed  Google Scholar 

  2. Wang X-L, Fang J-P, Tang R-Y, Chen X-M. Different significance between intratumoral and peritumoral lymphatic vessel density in gastric cancer: a retrospective study of 123 cases. BMC Cancer. 2010;10:299. https://doi.org/10.1186/1471-2407-10-299.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002;296:1883–6. https://doi.org/10.1126/science.1071420.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Zhao L, Chen H, Lu L, Wang L, Zhang X, Guo X. New insights into the role of co-receptor neuropilins in tumour angiogenesis and lymphangiogenesis and targeted therapy strategies. J Drug Target. 2021;29:155–67. https://doi.org/10.1080/1061186x.2020.1815210.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35(Suppl):S224–43. https://doi.org/10.1016/j.semcancer.2015.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jüttner S, Wissmann C, Jöns T, Vieth M, Hertel J, Gretschel S, et al. Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol. 2006;24:228–40. https://doi.org/10.1200/jco.2004.00.3467.

    Article  PubMed  Google Scholar 

  7. Cimpean AM, Mazuru V, Saptefrati L, Ceausu R, Raica M. Prox 1, VEGF-C and VEGFR3 expression during cervical neoplasia progression as evidence of an early lymphangiogenic switch. Histol Histopathol. 2012;27:1543–50. https://doi.org/10.14670/hh-27.1543.

    Article  CAS  PubMed  Google Scholar 

  8. Mylona E, Alexandrou P, Mpakali A, Giannopoulou I, Liapis G, Markaki S, et al. Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and -D and VEGF receptor 3 in invasive breast carcinoma. Eur J Surg Oncol. 2007;33:294–300. https://doi.org/10.1016/j.ejso.2006.10.015.

    Article  CAS  PubMed  Google Scholar 

  9. Van Trappen PO, Steele D, Lowe DG, Baithun S, Beasley N, Thiele W, et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol. 2003;201:544–54. https://doi.org/10.1002/path.1467.

    Article  CAS  PubMed  Google Scholar 

  10. Witte D, Thomas A, Ali N, Carlson N, Younes M. Expression of the vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C in human colorectal adenocarcinoma. Anticancer Res. 2002;22:1463–6.

    CAS  PubMed  Google Scholar 

  11. Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)–C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood. 2002;99:2179–84. https://doi.org/10.1182/blood.V99.6.2179.

    Article  CAS  PubMed  Google Scholar 

  12. Koller L, Joksch M, Schwarzenböck S, Kurth J, Heuschkel M, Holzleitner N, et al. Preclinical comparison of the 64Cu- and 68Ga-labeled GRPR-targeted compounds RM2 and AMTG, as well as first-in-humans [68Ga]Ga-AMTG PET/CT. J Nucl Med. 2023. https://doi.org/10.2967/jnumed.123.265771.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dai J, Hu J-J, Dong X, Chen B, Dong X, Liu R, et al. deep downregulation of pd-l1 by caged peptide-conjugated AIEgen/miR-140 nanoparticles for enhanced immunotherapy. Angew Chem Int Ed. 2022;61:e202117798. https://doi.org/10.1002/anie.202117798.

    Article  CAS  Google Scholar 

  14. Wang X, Zhou M, Chen B, Liu H, Fang J, Xiang S, et al. Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur J Nucl Med Mol Imaging. 2022;49:2584–94. https://doi.org/10.1007/s00259-021-05672-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li F, Zhang Z, Cai J, Chen X, Zhou Y, Ma X, et al. Primary preclinical and clinical evaluation of 68Ga-DOTA-TMVP1 as a novel VEGFR-3 PET imaging radiotracer in gynecological cancer. Clin Cancer Res. 2020;26:1318–26. https://doi.org/10.1158/1078-0432.CCR-19-1845.

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Dai G, Jiang G, Zhang D, Wang L, Zhang W, et al. A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy. J Nanobiotechnology. 2023;21:130. https://doi.org/10.1186/s12951-023-01883-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng Y, Sun C, Liu R, Yang J, Dai J, Zhai T, et al. A multifunctional peptide-conjugated AIEgen for efficient and sequential targeted gene delivery into the nucleus. Angew Chem Int Ed. 2019;58:5049–53. https://doi.org/10.1002/anie.201901527.

    Article  CAS  Google Scholar 

  18. Dai J, Li Y, Long Z, Jiang R, Zhuang Z, Wang Z, et al. Efficient near-infrared photosensitizer with aggregation-induced emission for imaging-guided photodynamic therapy in multiple xenograft tumor models. ACS Nano. 2020;14:854–66. https://doi.org/10.1021/acsnano.9b07972.

    Article  CAS  PubMed  Google Scholar 

  19. Dai J, Cheng Y, Wu J, Wang Q, Wang W, Yang J, et al. Modular peptide probe for pre/intra/postoperative therapeutic to reduce recurrence in ovarian cancer. ACS Nano. 2020;14:14698–714. https://doi.org/10.1021/acsnano.9b09818.

    Article  CAS  PubMed  Google Scholar 

  20. Hamley IW. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017;117:14015–41. https://doi.org/10.1021/acs.chemrev.7b00522.

    Article  CAS  PubMed  Google Scholar 

  21. Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev. 2017;110:38–51. https://doi.org/10.1016/j.addr.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  22. Dijkgraaf I, Yim C-B, Franssen G, Schuit R, Luurtsema G, Liu S, et al. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging. 2011;38:128–37. https://doi.org/10.1007/s00259-010-1615-x.

    Article  CAS  PubMed  Google Scholar 

  23. Kaeopookum P, Petrik M, Summer D, Klinger M, Zhai C, Rangger C, et al. Comparison of 68Ga-labeled RGD mono-and multimers based on a clickable siderophore-based scaffold. Nucl Med Biol. 2019;78:1–10. https://doi.org/10.1016/j.nucmedbio.2019.09.002.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Liu S, Wang F, Liu S, Chen X. Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers. Eur J Nucl Med Mol Imaging. 2009;36(8):1296–307. https://doi.org/10.1007/s00259-009-1112-2.

    Article  CAS  PubMed  Google Scholar 

  25. Liolios C, Buchmuller B, Bauder-Wüst U, Schäfer M, Leotta K, Haberkorn U, et al. Monomeric and dimeric 68Ga-labeled bombesin analogues for positron emission tomography (PET) imaging of tumors expressing gastrin-releasing peptide receptors (GRPrs). J Med Chem. 2018;61(5):2062–74. https://doi.org/10.1021/acs.jmedchem.7b01856.

    Article  CAS  PubMed  Google Scholar 

  26. Zang J, Wen X, Lin R, Zeng X, Wang C, Shi M, et al. Synthesis, preclinical evaluation and radiation dosimetry of a dual targeting PET tracer [68Ga]Ga-FAPI-RGD. Theranostics. 2022;12(16):7180–90. https://doi.org/10.7150/thno.79144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaudary N, Milosevic M, Hill RP. Suppression of vascular endothelial growth factor receptor 3 (VEGFR3) and vascular endothelial growth factor C (VEGFC) inhibits hypoxia-induced lymph node metastases in cervix cancer. Gynecol Oncol. 2011;123:393–400. https://doi.org/10.1016/j.ygyno.2011.07.006.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Lv J, Zhang T. Combination of IL-24 and cisplatin inhibits angiogenesis and lymphangiogenesis of cervical cancer xenografts in a nude mouse model by inhibiting VEGF. VEGF-C and PDGF-B Oncol Rep. 2015;33:2468–76. https://doi.org/10.3892/or.2015.3853.

    Article  CAS  PubMed  Google Scholar 

  29. Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008;454:656–60. https://doi.org/10.1038/nature07083.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Su J-L, Yen C, Chen P, Chuang S, Hong C, Kuo I, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer. 2007;96:541–5. https://doi.org/10.1038/sj.bjc.6603487.

    Article  CAS  PubMed  Google Scholar 

  31. Garranzo-Asensio M, Rodríguez-Cobos J, San Millán C, Poves C, Fernández-Aceñero MJ, Pastor-Morate D, et al. In-depth proteomics characterization of ∆Np73 effectors identifies key proteins with diagnostic potential implicated in lymphangiogenesis, vasculogenesis and metastasis in colorectal cancer. Mol Oncol. 2022;16(14):2672–92. https://doi.org/10.1002/1878-0261.13228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dumond A, Montemagno C, Vial V, Grépin R, Pagès G. Anti-vascular endothelial growth factor C antibodies efficiently inhibit the growth of experimental clear cell renal cell carcinomas. Cells. 2021;10(5):1222. https://doi.org/10.3390/cells10051222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matulonis UA, Berlin S, Ivy P, Tyburski K, Krasner C, Zarwan C, et al. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J Clin Oncol. 2009;27(33):5601–6. https://doi.org/10.1200/JCO.2009.23.2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eskens FA, Steeghs N, Verweij J, Bloem JL, Christensen O, van Doorn L, et al. Phase I dose escalation study of telatinib, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor 2 and 3, platelet-derived growth factor receptor beta, and c-Kit, in patients with advanced or metastatic solid tumors. J Clin Oncol. 2009;27(25):4169–76. https://doi.org/10.1200/JCO.2008.18.8193.

    Article  CAS  PubMed  Google Scholar 

  35. Eskens FA, de Jonge MJ, Bhargava P, Isoe T, Cotreau MM, Esteves B, et al. Biologic and clinical activity of tivozanib (AV-951, KRN-951), a selective inhibitor of VEGF receptor-1, -2, and -3 tyrosine kinases, in a 4-week-on, 2-week-off schedule in patients with advanced solid tumors. Clin Cancer Res. 2011;17(22):7156–63. https://doi.org/10.1158/1078-0432.CCR-11-0411.

    Article  CAS  PubMed  Google Scholar 

  36. Saif MW, Knost JA, Chiorean EG, Kambhampati SR, Yu D, Pytowski B, et al. Phase 1 study of the anti-vascular endothelial growth factor receptor 3 monoclonal antibody LY3022856/IMC-3C5 in patients with advanced and refractory solid tumors and advanced colorectal cancer. Cancer Chemother Pharmacol. 2016;78(4):815–24. https://doi.org/10.1007/s00280-016-3134-3.

    Article  CAS  PubMed  Google Scholar 

  37. Qin T, Liu Z, Wang J, Xia J, Liu S, Jia Y, et al. Anlotinib suppresses lymphangiogenesis and lymphatic metastasis in lung adenocarcinoma through a process potentially involving VEGFR-3 signaling. Cancer Biol Med. 2020;17(3):753–67. https://doi.org/10.20892/j.issn.2095-3941.2020.0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors acknowledge financial support by the National Natural Science Foundation of China (22104040, 82172717, 81802608, and 82272628) and the co-operation Research Plan of Medical Science and Technology of Henan Province (LHGJ20220415).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Dai, Fei Li or Ling Xi.

Ethics declarations

Ethics approval

All procedures involving human participants were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Animal care and handling procedures were in agreement with the guidelines evaluated and approved by the Ethics Committee of Tongji Medical College Huazhong University of Science and Technology.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, Z., Wang, L. et al. Homodimeric peptide radiotracer [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 imaging of cervical cancer patients. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06661-6

Keywords

Navigation