Oridonin Attenuates Thioacetamide-Induced Osteoclastogenesis Through MAPK/NF-κB Pathway and Thioacetamide-Inhibited Osteoblastogenesis Through BMP-2/RUNX2 Pathway

Author:

Jin XiaoLi,Xu Jia,Yang Fanfan,Chen Jin,Luo Feng,Xu Bin,Xu JianORCID

Abstract

AbstractOsteoporosis, an age-related metabolic bone disease, is mainly caused by an imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. At present, there are many osteoporosis drugs that can promote bone formation or inhibit bone resorption. However, there were few therapeutic drugs that can simultaneously promote bone formation and inhibit bone resorption. Oridonin (ORI), a tetracyclic diterpenoid compound isolated from Rabdosia rubescens, has been proved to have anti-inflammatory, anti-tumor effects. However, little is known about the osteoprotective effect of oridonin. Thioacetamide (TAA) is a common organic compound with significant hepatotoxicity. Recent studies have found that there was a certain association between TAA and bone injury. In this work, we investigated the effect and mechanism of ORI on TAA-induced osteoclastogenesis and inhibition of osteoblast differentiation. The results showed that TAA could promote the osteoclastogenesis of RAW264.7 by promoting the MAPK/NF-κB pathway, and also promoted p65 nuclear translocation and activated intracellular ROS generation, and ORI can inhibit these effects to inhibit TAA-induced osteoclastogenesis. Moreover, ORI can also promote the osteogenic differentiation pathway and inhibit adipogenic differentiation of BMSCs to promote bone formation. In conclusion, our results revealed that ORI, as a potential therapeutic drug for osteoporosis, could protect against TAA-induced bone loss and TAA-inhibited bone formation.

Funder

Natural Science Foundation of Zhejiang Province

Provincial Traditional Chinese Medicine Science and Technology Program

Zhejiang University Student Science and Technology Innovation Activity Plan

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3