PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials

Author:

Zago StefanoORCID,Scarpetta-Pizo Laura C.ORCID,Zagal José H.ORCID,Specchia StefaniaORCID

Abstract

AbstractBiomass is a low-cost, abundant and renewable resource that can be used to manufacture porous carbon-based materials for a variety of applications. Different mesoporous carbon supports can be obtained from the various synthetic approaches that are aimed at increasing the specific surface area and functionalization. Currently, most of the biomass is used for energy recovery. The circular economy approach could lead to the development of cheap and sustainable materials, and turning of wastes into a precious resource. In this review, we provide the recent advances in the field of electrochemistry for porous carbon materials derived from biomass, which offers wider applications in proton exchange membrane fuel cells (PEMFCs), anion exchange membrane fuel cells (AEMFCs) and Zn-air batteries (ZABs). The focus is on understanding the required properties of the materials and the role of synthetic pathways in platinum group metal (PGM) free electrocatalysts. The most promising materials are evaluated towards the oxygen reduction reaction (ORR) in PEMFC, AEMFC, and ZAB. The results achieved showed that the expected performances on these energy conversion devices still lack for deployment in practice, especially if compared with commercially available PGM-free electrocatalysts. This review article provides insights on how to improve the actual electrocatalytic activity of biomass-derived materials. Graphical Abstract

Funder

Conicyt/nid

Fondecyt

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Electrochemistry,Energy Engineering and Power Technology,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3