Development of acoustic computer simulation for performance spaces: A systematic review and meta-analysis

Author:

Wang Chao,Kang Jian

Abstract

AbstractThis article aims to review the development of acoustic computer simulation for performance spaces. The databases of Web of Science and Scopus were searched for peer-reviewed journal articles published in English between 1960 and 2021, using the keywords for “simulation”, “acoustic”, “performance space”, “measure”, and their synonyms. The inclusion criteria were as follows: (1) the searched article should be focused on the field of room acoustics (reviews were excluded); (2) a computer simulation algorithm should be used; (3) it should be clearly stated that the simulated object is a performance space; and (4) acoustic measurements should be used for comparison with the simulation. Finally, twenty studies were included. A standardised data extraction form was used to collect the modelling information, software/algorithm, indicators for comparison, and other information. The results revealed that the most used acoustic indicators were early decay time (EDT), reverberation time (T30), strength (G), and definition (D50). The accuracy of these indicators differed greatly. For non-iterative simulation, the simulation accuracies of most indicators were outside their respective just noticeable differences. Although a larger sample size was required for further validation, simulations of T30, EDT, and D50 all showed an increase in accuracy with increasing time from 1979 to 2020, except for G. In terms of frequency, the simulation was generally less accurate at lower frequencies, which occurred at T30, G, D50 and T20. However, EDT accuracy did not exhibit significant frequency sensitivity. The prediction accuracy of inter-aural cross-correlation coefficients (IACC) was even higher at low frequencies than it was at high frequencies. The average value of most indicators showed a clear systematic deviation from zero, providing hints for future algorithm improvements. Limitations and the risks of bias in this review were discussed. Finally, various types of benchmark tests were suggested for various comparison goals.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3