Abstract
AbstractA two-field formulation of the nonlinear dynamics of an elastic body is presented in which positions/orientations and the resulting velocity field are treated as independent. Combining a nonclassical description of elastic velocity that includes the convection velocity due to elastic deformation with floating reference axes minimizing the relative kinetic energy due to elastic deformation provides a fully uncoupled expression of kinetic energy. A transformation inspired by the classical Legendre transformation concept is introduced to develop the motion equations in canonical form. Finite element discretization is achieved using the same shape function sets for elastic displacements and velocities. Specific attention is brought to the discretization of the gyroscopic forces induced by elastic deformation. A model reduction strategy to construct superelement models suitable for flexible multibody dynamics applications is proposed, which fulfills the essential condition of orthogonality between a rigid body and elastic motions. The problem of expressing kinematic connections at superelement boundaries is briefly addressed. Two academic examples have been developed to illustrate some of the concepts presented.
Funder
TUM-IAS
Technische Universität München
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation
Reference27 articles.
1. Berzeri, M., Campanelli, M., Shabana, A.A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5(1), 21–54 (2001)
2. Boer, S., Aarts, R., Meijaard, J.P., Brouwer, D.M., Jonker, J.B.: A two-node superelement description for modelling of flexible complex-shaped beam-like components. Multibody Dynamics. In: Samin, J.C., Fisette, P. (eds.) ECCOMAS Thematic Conference, Brussels, Belgium, 4–7 July 2011, (2011)
3. Brüls, O., Arnold, M.: The generalized-$\alpha$ scheme as a linear multistep integrator: toward a general mechatronic simulator. J. Comput. Nonlinear Dyn. 3(4), 041007 (2008)
4. Cammarata, A., Pappalardo, C.M.: On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation. Mech. Syst. Signal Process. 142, 106745 (2020)
5. Canavin, J., Likins, P.: Floating reference frames for flexible spacecraft. J. Spacecr. Rockets 14(12), 724–732 (1977)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献