Advancement of Analytical Model for Hydrophobic Rectangular Pillared Array on Al-Surface and Its Experimental Validation

Author:

Jaishree Sharma,Bhandari Anupam,Khatri Neha,Singh Bharpoor,Jangra Sahil,Husain Akmal,Kumar Avinash,Goyat M. S.ORCID

Abstract

AbstractOver the past few decades, self-cleaning surfaces have been significantly investigated due to their commercial applications in various fields. However, the researchers are still lagging in developing better mathematical models and fabricating hydrophobic surfaces for direct espousal in industry. In this study, a force-balanced system-based mathematical model is modified for a rectangular pillared array-based micro-structure and MATLAB simulations were used to validate it theoretically. The same pattern was developed on Al-surface using a single-point diamond turning (SPDT) machine experimentally. The experimental results were validated using coherence correlation interferometry (CCI), optical microscopy, drop shape analyser (DSA), and field emission scanning electron microscopy (FESEM). The experimentally estimated and theoretically predicted contact angles of the rectangular pillared array are found in close agreement. Further, the advancement in mathematical models and models-based surface manufacturing strategies can boost the research in this domain to develop robust self-cleaning hydrophobic surfaces.

Funder

Science and Engineering Research Board

University of Southern Denmark

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3