Author:
Nottoli Tommaso,Giannì Ivan,Levitt Antoine,Lipparini Filippo
Abstract
AbstractWe present two open-source implementations of the locally optimal block preconditioned conjugate gradient (lobpcg) algorithm to find a few eigenvalues and eigenvectors of large, possibly sparse matrices. We then test lobpcg for various quantum chemistry problems, encompassing medium to large, dense to sparse, well-behaved to ill-conditioned ones, where the standard method typically used is Davidson’s diagonalization. Numerical tests show that while Davidson’s method remains the best choice for most applications in quantum chemistry, LOBPCG represents a competitive alternative, especially when memory is an issue, and can even outperform Davidson for ill-conditioned, non-diagonally dominant problems.
Funder
Ministero dell'Università e della Ricerca
Università di Pisa
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献