Parkin depletion prevents the age-related alterations in the FGF21 system and the decline in white adipose tissue thermogenic function in mice

Author:

Delgado-Anglés AlejandroORCID,Blasco-Roset AlbertORCID,Godoy-Nieto Francisco J.,Cairó MontserratORCID,Villarroya FrancescORCID,Giralt MartaORCID,Villarroya JoanORCID

Abstract

AbstractParkin is an ubiquitin‐E3 ligase that is involved in cellular mitophagy and was recently shown to contribute to controlling adipose tissue thermogenic plasticity. We found that Parkin expression is induced in brown (BAT) and white (WAT) adipose tissues of aged mice. We determined the potential role of Parkin in the aging-associated decline in the thermogenic capacity of adipose tissues by analyzing subcutaneous WAT, interscapular BAT, and systemic metabolic and physiological parameters in young (5 month-old) and aged (16 month-old) mice with targeted invalidation of the Parkin (Park2) gene, and their wild-type littermates. Our data indicate that suppression of Parkin prevented adipose accretion, increased energy expenditure and improved the systemic metabolic derangements, such as insulin resistance, seen in aged mice. This was associated with maintenance of browning and reduction of the age-associated induction of inflammation in subcutaneous WAT. BAT in aged mice was much less affected by Parkin gene invalidation. Such protection was associated with a dramatic prevention of the age-associated induction of fibroblast growth factor-21 (FGF21) levels in aged Parkin-invalidated mice. This was associated with a parallel reduction in FGF21 gene expression in adipose tissues and liver in aged Parkin-invalidated mice. Additionally, Parkin invalidation prevented the protein down-regulation of β-Klotho (a key co-receptor mediating FGF21 responsiveness in tissues) in aged adipose tissues. We conclude that Parkin down-regulation leads to improved systemic metabolism in aged mice, in association with maintenance of adipose tissue browning and FGF21 system functionality.

Funder

Ministerio de Ciencia e Innovación

European Regional Development Fund

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3