Vascular nitrosative stress in hypertension induced by fetal undernutrition in rats

Author:

Rodríguez-Rodríguez PilarORCID,Poasakate AnusonORCID,Ruvira-Hernando SantiagoORCID,Gutierrez-Arzapalo Perla Y.ORCID,Böger RainerORCID,Hannemann JulianeORCID,Lüneburg Nicole,Arribas Silvia M.ORCID

Abstract

AbstractFetal undernutrition predisposes to hypertension development. Since nitric oxide (NO) is a key factor in blood pressure control, we aimed to investigate the role of NO alterations in hypertension induced by fetal undernutrition in rats. Male and female offspring from dams exposed to undernutrition during the second half of gestation (MUN) were studied at 21 days (normotensive) and 6 months of age (hypertension developed only in males). In aorta, we analyzed total and phosphorylated endothelial NO synthase (eNOS, p-eNOS), 3-nitrotyrosine (3-NT), and Nrf2 (Western blot). In plasma we assessed l-arginine, asymmetric and symmetric dimethylarginine (ADMA, SDMA; LC–MS/MS), nitrates (NOx, Griess reaction), carbonyl groups, and lipid peroxidation (spectrophotometry). In iliac arteries, we studied superoxide anion production (DHE staining, confocal microscopy) and vasodilatation to acetylcholine (isometric tension). Twenty-one-day-old MUN offspring did not show alterations in vascular e-NOS or 3NT expression, plasma l-Arg/ADMA ratio, or NOx. Compared to control group, 6-month-old MUN rats showed increased aortic expression of p-eNOS/eNOS and 3-NT, being Nrf2 expression lower, elevated plasma l-arginine/ADMA, NOx and carbonyl levels, increased iliac artery DHE staining and reduced acetylcholine-mediated relaxations. These alterations in MUN rats were sex-dependent, affecting males. However, females showed some signs of endothelial dysfunction. We conclude that increased NO production in the context of a pro-oxidative environment, leads to vascular nitrosative damage and dysfunction, which can participate in hypertension development in MUN males. Females show a better adaptation, but signs of endothelial dysfunction, which can explain hypertension in ageing.

Funder

Ministerio de Ciencia e Innovación

Khon Kaen University

Universidad Autónoma de Madrid

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3