Sliding modes of high codimension in piecewise-smooth dynamical systems

Author:

Guglielmi Nicola,Hairer Ernst

Abstract

AbstractWe consider piecewise-smooth dynamical systems, i.e., systems of ordinary differential equations switching between different sets of equations on distinct domains, separated by hyper-surfaces. As is well-known, when the solution approaches a discontinuity manifold, a classical solution may cease to exist. For this reason, starting with the pioneering work of Filippov, a concept of weak solution (also known as sliding mode) has been introduced and studied. Nowadays, the solution of piecewise-smooth dynamical systems in and close to discontinuity manifolds is well understood, if the manifold consists locally of a single discontinuity hyper-surface or of the intersection of two discontinuity hyper-surfaces. The present work presents partial results on the solution in and close to discontinuity manifolds of codimension 3 and higher.

Funder

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference23 articles.

1. Acary, V., Brogliato, B.: Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35 Springer-Verlag (2008)

2. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems, vol. 163 of Applied Mathematical Sciences. Springer-Verlag London Ltd., London. Theory and applications (2008)

3. Dieci, L., Difonzo, F.: A comparison of Filippov sliding vector fields in codimension 2. J. Comput. Appl Math. 262, 161–179 (2014)

4. Dieci, L., Difonzo, F.: Minimum variation solutions for sliding vector fields on the intersection of two surfaces in $\mathbb {R},^{3}$. J. Comput. Appl Math. 292, 732–745 (2016)

5. Filippov, A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. (N.S.) 51(93), 99–128 (1960). Amer. Math. Soc. Transl. Ser. 2, Vol. 42, pp. 199–231

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3