Hi'CT: a pixel sensor-based device for ion tomography

Author:

Chen Yi-LunORCID,Wang Hong-KaiORCID,Zhang Shi-Yu,Yang Hai-BoORCID,Zhao Cheng-XinORCID

Abstract

AbstractCarbon ions, commonly referred to as particle therapy, have become increasingly popular in the last decade. Accurately predicting the range of ions in tissues is important for the precise delivery of doses in heavy-ion radiotherapy. Range uncertainty is currently the largest contributor to dose uncertainty in normal tissues, leading to the use of safety margins in treatment planning. One potential method is the direct relative stopping measurement (RSP) with ions. Heavy-ion CT (Hi′CT), a compact segmented full digital tomography detector using monolithic active pixel sensors, was designed and evaluated using a 430 MeV/u high-energy carbon ion pencil beam in Geant4. The precise position of the individual carbon ion track can be recorded and reconstructed using a 30 μm × 30 μm small pixel pitch size. Two types of customized image reconstruction algorithms were developed, and their performances were evaluated using three different modules of CATPHAN 600-series phantoms. The RSP measurement accuracy of the tracking algorithm for different types of materials in the CTP404 module was less than 1%. In terms of spatial resolution, the tracking algorithm could achieve a 20% modulation transfer function normalization value of CTP528 imaging results at 5 lp/cm, which is significantly better than that of the fast imaging algorithm (3 lp/cm). The density resolution obtained using the tracking algorithm of the customized CTP515 was approximately 10.5%. In conclusion, a compact digital Hi'CT system was designed, and its nominal performance was evaluated in a simulation. The RSP resolution and image quality provide potential feasibility for scanning most parts of an adult body or pediatric patient, particularly for head and neck tumor treatment.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in nuclear detection and readout techniques;Nuclear Science and Techniques;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3