1. Adams, M., Brezina, M., Hu, J., Tuminaro, R.: Parallel multigrid smoothing: Polynomial versus Gauss-Seidel. J. Comput. Phys. 188, 593–610 (2003)
2. Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M.: Multigrid smoothers for ultra-parallel computing. 2010. (submitted). Also available as a Lawrence Livermore National Laboratory technical report LLNL-JRNL-435315
3. Baker, A.H., Gamblin, T., Schulz, M., Yang, U.M.: Challenges of scaling algebraic multigrid across modern multicore architectures. In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2011) (2011) To appear. Also available as LLNL Tech. Report LLNL-CONF-458074.
4. Baker, A.H., Schulz, M., Yang, U.M.: On the performance of an algebraic multigrid solver on multicore clusters. In: J.M.L.M. Palma et al, editor, VECPAR 2010, Lecture Notes in Computer Science 6449, pp. 102–115. Springer (2010) Berkeley, CA, June 2010.
http://vecpar.fe.up.pt/2010/papers/24.php
5. Chow, E., Falgout, R., Hu, J., Tuminaro, R., Yang, U.: A survey of parallelization techniques for multigrid solvers. In: Heroux, M., Raghavan, P., Simon, H. (eds.) Parallel Processing for Scientific Computing. SIAM Series on Software, Environments, and Tools (2006)