Polymorphic renal transporters and cisplatin’s toxicity in urinary bladder cancer patients: current perspectives and future directions

Author:

Selim Mohamed S.ORCID,Kassem Amira B.,El-Bassiouny Noha A.,Salahuddin Ahmad,Abu El-Ela Raghda Y.,Hamza Marwa Samir

Abstract

AbstractUrinary bladder cancer (UBC) holds a potentially profound social burden and affects over 573,278 new cases annually. The disease’s primary risk factors include occupational tobacco smoke exposure and inherited genetic susceptibility. Over the past 30 years, a number of treatment modalities have emerged, including cisplatin, a platinum molecule that has demonstrated effectiveness against UBC. Nevertheless, it has severe dose-limiting side effects, such as nephrotoxicity, among others. Since intracellular accumulation of platinum anticancer drugs is necessary for cytotoxicity, decreased uptake or enhanced efflux are the root causes of platinum resistance and response failure. Evidence suggests that genetic variations in any transporter involved in the entry or efflux of platinum drugs alter their kinetics and, to a significant extent, determine patients’ responses to them. This review aims to consolidate and describe the major transporters and their polymorphic variants in relation to cisplatin-induced toxicities and resistance in UBC patients. We concluded that the efflux transporters ABCB1, ABCC2, SLC25A21, ATP7A, and the uptake transporter OCT2, as well as the organic anion uptake transporters OAT1 and OAT2, are linked to cisplatin accumulation, toxicity, and resistance in urinary bladder cancer patients. While suppressing the CTR1 gene’s expression reduced cisplatin-induced nephrotoxicity and ototoxicity, inhibiting the expression of the MATE1 and MATE2-K genes has been shown to increase cisplatin’s nephrotoxicity and resistance. The roles of ABCC5, ABCA8, ABCC10, ABCB10, ABCG1, ATP7B, ABCG2, and mitochondrial SLC25A10 in platinum-receiving urinary bladder cancer patients should be the subject of further investigation.

Funder

British University in Egypt

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3