Chitosan-loaded piperlongumine nanoparticles and kaempferol enhance the anti-cancer action of doxorubicin in targeting of Ehrlich solid adenocarcinoma: in vivo and in silico modeling study

Author:

Ibrahim Fawziya A. R.,Hussein Neveen A.,Soliman Aisha Y. M.,shalaby Thanaa I.,Rashad Mona M.,Matar Noura A.,El-Sewedy Tarek S.ORCID

Abstract

AbstractDoxorubicin is a chemotherapeutic drug that generates free radical-induced toxicities. Natural agents are used to potentiate or ameliorate the toxicity of chemotherapy. None of the studies investigating whether antioxidants or prooxidants should be used with chemotherapy have addressed their efficacy in the same study. Therefore, the aim of this study was to investigate the potential synergy between doxorubicin and two natural rarely in vivo studied anticancer agents; the antioxidant “Kaempferol” and prooxidant “Piperlongumine” in Ehrlich tumor mice model. 77 albino mice were divided into 11 groups; Ehrlich ascites carcinoma cells were injected intramuscularly to develop solid tumors. After 14 days, intratumoral injections of single or combinations of free or Chitosan nanoparticles loaded with doxorubicin, Piperlongumine, and Kaempferol were performed. Tumor Characterization of nanoparticles was measured, tumors were histopathologically examined and evaluation of expression for cancer-related genes by real-time PCR. In silico molecular docking was performed to uncover potential novel targets for Piperlongumine and Kaempferol. Despite receiving half of the overall dose compared to the free drugs, the combined doxorubicin/ piperlongumine-chitosan nanoparticles treatment was the most efficient in reducing tumor volume; down-regulating Cyclin D1, and BCL2; as well as the Beclin-1, and Cyclophilin A genes modulating growth, apoptosis, autophagy, and metastasis, respectively; up-regulating the Glutathione peroxidase expression as a defense mechanism protecting from oxidative damage. When combined with doxorubicin, Kaempferol and Piperlongumine were effective against Ehrlich solid tumors. However, the combination with the Piperlongumine-loaded chitosan nanoparticles significantly enhanced its anticancer effect compared to the Kaempferol or the same free compounds.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3