Skip to main content

Advertisement

Log in

Role of interferon-induced transmembrane protein family in cancer progression: a special focus on pancreatic cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Human interferon-induced transmembrane protein family (IFITMs) consists of five main proteins. IFITM1, IFITM2, and IFITM3 can be induced by interferon, while IFITM5 and IFITM10 are insensitive to interferon. IFITMs has various functions, including well-researched antiviral effects. As a molecule whose expression is significantly increased by interferon in the immune microenvironment, IFITMs has drawn growing interest in recent years for their role in the cancer progression. Unlike antiviral effects, the role and mechanism of IFITMs in cancer progression have not been clearly studied, especially the role and molecular mechanism of IFITMs in pancreatic cancer are rarely reported in the literature. This article focuses on the role and potential mechanism of IFITMs in pancreatic cancer progression by analyzing the function and mechanism of IFITM1-3 in other cancers and conducting bioinformatics analysis using the databases, so as to provide a new target for pancreatic cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data of this article can be found from UCSC Xena (https://xenabrowser.net/), TCGA database (https://tcga-data.nci.nih.gov/tcga/), and GTEx databases (http://commonfund.nih.gov/GTEx/). The unpaired t test and one-way ANOVA were used to analyze the expression levels of IFITMs in tumor and normal tissues and the relationship with pathologic characteristics by GraphPad Prism 9.5 or R packages ggplot2 and ggpubr. The survival probability was determined using Kaplan–Meier survival curves by log-rank test and cox regression analysis by R packages survival and survminer. The CIBERSORT deconvolution algorithm was introduced to analyze the relative abundance of infiltrating immune cells from the gene expression data of PAAD in TCGA datasets by R package CIBERSORT. All statistical tests were two-sided. The p < 0.05 was considered statistically significant. Figures 2, 3, and 5 are plotted by online software Biorender (https://app.biorender.com).

References

  1. Zhang Z, et al. Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates. PLoS ONE. 2012;7: e49265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weston S, et al. A membrane topology model for human interferon inducible transmembrane protein 1. PLoS ONE. 2014;9: e104341.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li C, et al. Antiviral role of IFITM proteins in classical swine fever virus Infection. Viruses. 2019;11:126–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lewin AR, et al. Molecular analysis of a human interferon-inducible gene family. Eur J Biochem. 1991;199:417–23.

    Article  CAS  PubMed  Google Scholar 

  5. Siegrist F, et al. The small interferon-induced transmembrane genes and proteins. J Interferon Cytokine Res. 2011;31:183–97.

    Article  CAS  PubMed  Google Scholar 

  6. John SP, et al. The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J Virol. 2013;87:7837–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan YK, et al. IFITM proteins restrict antibody-dependent enhancement of dengue virus infection. PLoS ONE. 2012;7: e34508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feeley EM, et al. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog. 2011;7: e1002337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu J, et al. The IFITM proteins inhibit HIV-1 infection. J Virol. 2011;85:2126–37.

    Article  CAS  PubMed  Google Scholar 

  10. Bozzo CP, et al. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun. 2021;12:4584.

    Article  Google Scholar 

  11. Gomez-Herranz M, et al. IFITM proteins: Understanding their diverse roles in viral infection, cancer, and immunity. J Biol Chem. 2023;299: 102741.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, et al. IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-beta signaling pathway. Cell Death Dis. 2019;10:517.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu L, et al. IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes gastric cancer growth and metastasis. Cancer Lett. 2017;393:76–85.

    Article  CAS  PubMed  Google Scholar 

  14. Hu J, et al. Mechanism and biological significance of the overexpression of IFITM3 in gastric cancer. Oncol Rep. 2014;32:2648–56.

    Article  CAS  PubMed  Google Scholar 

  15. Yu F, et al. IFITM1 promotes the metastasis of human colorectal cancer via CAV-1. Cancer Lett. 2015;368:135–43.

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, et al. Combination of IFITM1 knockdown and radiotherapy inhibits the growth of oral cancer. Cancer Sci. 2018;109:3115–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tirosh B, et al. “1-8 interferon inducible gene family”: putative colon carcinoma-associated antigens. Br J Cancer. 2007;97:1655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daniel-Carmi V, et al. The human 1–8D gene (IFITM2) is a novel p53 independent pro-apoptotic gene. Int J Cancer. 2009;125:2810–9.

    Article  CAS  PubMed  Google Scholar 

  19. Andreu P, et al. Identification of the IFITM family as a new molecular marker in human colorectal tumors. Cancer Res. 2006;66:1949–55.

    Article  CAS  PubMed  Google Scholar 

  20. Yang N, et al. Predicative value of IFITM2 in renal clear cell carcinoma: IFITM2 is associated with lymphatic metastasis and poor clinical outcome. Biochem Biophys Res Commun. 2021;534:157–64.

    Article  CAS  PubMed  Google Scholar 

  21. Cai Y, et al. Interferon-induced transmembrane protein 3 shapes an inflamed tumor microenvironment and identifies immuno-hot tumors. Front Immunol. 2021;12: 704965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui Y, et al. Downregulation of caveolin-1 increased EGFR-TKIs sensitivity in lung adenocarcinoma cell line with EGFR mutation. Biochem Biophys Res Commun. 2018;495:733–9.

    Article  CAS  PubMed  Google Scholar 

  23. Koh YW, et al. Prognostic significance of IFITM1 expression and correlation with microvessel density and epithelial-mesenchymal transition signature in lung adenocarcinoma. Pathol Res Pract. 2019;215: 152444.

    Article  CAS  PubMed  Google Scholar 

  24. Sakamoto S, et al. Interferon-induced transmembrane protein 1 (IFITM1) promotes distant metastasis of small cell lung cancer. Int J Mol Sci. 2020;21(14):4934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lui AJ, et al. IFITM1 suppression blocks proliferation and invasion of aromatase inhibitor-resistant breast cancer in vivo by JAK/STAT-mediated induction of p21. Cancer Lett. 2017;399:29–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang M, et al. Knockdown of interferon-induced transmembrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle. Oncol Rep. 2013;30:171–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hou Y, et al. Interferon-induced transmembrane protein 3 expression upregulation is involved in progression of hepatocellular carcinoma. Biomed Res Int. 2021;2021:5612138.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Seyfried NT, et al. Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Lett. 2008;263:243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao B, et al. The role of IFITM3 in the growth and migration of human glioma cells. BMC Neurol. 2013;13:210.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mizoshiri N, et al. The tetraspanin CD81 mediates the growth and metastases of human osteosarcoma. Cell Oncol (Dordr). 2019;42:861–71.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, et al. High IFITM3 expression predicts adverse prognosis in acute myeloid leukemia. Cancer Gene Ther. 2020;27:38–44.

    Article  CAS  PubMed  Google Scholar 

  32. Liang Y, et al. Malignant clonal evolution drives multiple myeloma cellular ecological diversity and microenvironment reprogramming. Mol Cancer. 2022;21:182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akyerli CB, et al. Expression of IFITM1 in chronic myeloid leukemia patients. Leuk Res. 2005;29:283–6.

    Article  CAS  PubMed  Google Scholar 

  34. Carmelle R, et al. Differentiating pancreatic lesions by microarray and QPCR analysis of pancreatic juice RNAs. Cancer Biol Ther. 2006;5:1383–9.

    Article  Google Scholar 

  35. Wu L, et al. Identification of IFN-induced transmembrane protein 1 with prognostic value in pancreatic cancer using network module-based analysis. Front Oncol. 2021;11: 626883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lei Z, et al. Knockdown of interferon-induced transmembrane protein 1 inhibited proliferation, induced cell cycle arrest and apoptosis, and suppressed MAPK signaling pathway in pancreatic cancer cells. Biosci Biotechnol Biochem. 2020;84:1603–13.

    Article  Google Scholar 

  37. Yang G, et al. IFITM1 plays an essential role in the antiproliferative action of interferon-gamma. Oncogene. 2007;26:594–603.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, et al. Increased expression of CD81 is associated with poor prognosis of prostate cancer and increases the progression of prostate cancer cells in vitro. Exp Ther Med. 2020;19:755–61.

    CAS  PubMed  Google Scholar 

  39. Gan CP, et al. IFITM3 knockdown reduces the expression of CCND1 and CDK4 and suppresses the growth of oral squamous cell carcinoma cells. Cell Oncol (Dordr). 2019;42:477–90.

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, et al. Interferon-induced transmembrane protein 2 promotes epithelial–mesenchymal transition by activating transforming growth factor-beta1/small mother against decapentaplegic 2 signaling in gastric cancer. Mol Biol Rep. 2022;49:997–1006.

    Article  CAS  PubMed  Google Scholar 

  41. Sigismund S, et al. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12:3–20.

    Article  PubMed  Google Scholar 

  42. Li Q, et al. RUNX1 promotes tumour metastasis by activating the Wnt/beta-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hatano H, et al. IFN-induced transmembrane protein 1 promotes invasion at early stage of head and neck cancer progression. Clin Cancer Res. 2008;14:6097–105.

    Article  CAS  PubMed  Google Scholar 

  44. He JD, et al. Influences of the interferon induced transmembrane protein 1 on the proliferation, invasion, and metastasis of the colorectal cancer SW480 cell lines. Chin Med J (Engl). 2012;125:517–22.

    CAS  PubMed  Google Scholar 

  45. Tolomeo M, et al. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. Int J Mol Sci. 2021;22:603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weichselbaum RR, et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci U S A. 2008;105:18490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khodarev NN, et al. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci U S A. 2004;101:1714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Le TV, et al. Increased expression of p27 is associated with the cisplatin resistance in gastric cancer cell line YCC-3. Arch Pharm Res. 2010;33:1127–32.

    Article  CAS  PubMed  Google Scholar 

  49. Goad DW, et al. Acquired chemoresistance can lead to increased resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. Mol Ther Oncolytics. 2022;24:59–76.

    Article  CAS  PubMed  Google Scholar 

  50. Choi HJ, et al. Targeting interferon response genes sensitizes aromatase inhibitor resistant breast cancer cells to estrogen-induced cell death. Breast Cancer Res. 2015;17:6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Salas S, et al. Molecular characterization of the response to chemotherapy in conventional osteosarcomas: predictive value of HSD17B10 and IFITM2. Int J Cancer. 2009;125:851–60.

    Article  CAS  PubMed  Google Scholar 

  52. Li H, et al. Expression and prognostic value of IFITM1 and IFITM3 in head and neck squamous cell carcinoma. Am J Clin Pathol. 2020;153:618–29.

    Article  CAS  PubMed  Google Scholar 

  53. Chan RH, et al. The expression quantitative trait loci in immune response genes impact the characteristics and survival of colorectal cancer. Diagnostics (Basel). 2022;12:315.

    Article  CAS  PubMed  Google Scholar 

  54. Peters BA, et al. The lung microbiome, peripheral gene expression, and recurrence-free survival after resection of stage II non-small cell lung cancer. Genome Med. 2022;14:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ning F, et al. Hes1 attenuates type I IFN responses via VEGF-C and WDFY1. J Exp Med. 2019;216:1396–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Popson SA, et al. Interferon-induced transmembrane protein 1 regulates endothelial lumen formation during angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murphy K, et al. Janeway’s immunobiology. 8th ed. New York: Garland Science; 2011. p. 685–7.

    Google Scholar 

  58. Gomez-Herranz M, et al. The effects of IFITM1 and IFITM3 gene deletion on IFNgamma stimulated protein synthesis. Cell Signal. 2019;60:39–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thibaut R, et al. Bystander IFN-gamma activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer. 2020;1:302–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang Y, et al. The interferon-inducible 9–27 gene modulates the susceptibility to natural killer cells and the invasiveness of gastric cancer cells. Cancer Lett. 2005;221:191–200.

    Article  CAS  PubMed  Google Scholar 

  61. Vences-Catalan F, et al. Tetraspanin CD81 promotes tumor growth and metastasis by modulating the functions of T regulatory and myeloid-derived suppressor cells. Cancer Res. 2015;75:4517–26.

    Article  CAS  PubMed  Google Scholar 

  62. Shen C, et al. Identification of differentially expressed transcripts targeted by the knockdown of endogenous IFITM3. Mol Med Rep. 2016;14:4367–73.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang R, et al. Role of the complement system in the tumor microenvironment. Cancer Cell Int. 2019;19:300.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rosati A, et al. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages. Nat Commun. 2015;6:8695.

    Article  CAS  PubMed  Google Scholar 

  65. Yanez DC, et al. IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation. Eur J Immunol. 2019;49:66–78.

    Article  CAS  PubMed  Google Scholar 

  66. Lee J, et al. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature. 2020;588:491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hanahan D, et al. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  68. Rouse BT, et al. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol. 2010;10:514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baumgartner CK, et al. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature. 2023;622:850–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was funded by Sichuan University Dedicated Postdoctoral Research and Development Fund Project (2022SCU12030).

Author information

Authors and Affiliations

Authors

Contributions

Peipei Wang participated in the Conceptualization, funding acquisition, methodology, resources, software, investigation, formal analysis, and writing of the original draft; Yan Pan participated in the Data curation and writing of the original draft; Yu Zhang participated in the Software, visualization, and investigation; Congliang Chen participated in the Software, resources, and validation; Junmei Hu participated in the Resources and writing, reviewing, and editing of the manuscript; Xia Wang (Corresponding Author) participated in the Conceptualization, resources, supervision, and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Xia Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1522 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Pan, Y., Zhang, Y. et al. Role of interferon-induced transmembrane protein family in cancer progression: a special focus on pancreatic cancer. Med Oncol 41, 85 (2024). https://doi.org/10.1007/s12032-024-02308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02308-6

Keywords

Navigation