Skip to main content

Advertisement

Log in

Selective targeting or reprogramming of intra-tumoral Tregs

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Regulatory T cells (Tregs) are critical immunosuppressive cells that are frequently present in the tumor microenvironment of solid cancers and enable progression of tumors toward metastasis. The cells expand in response to tumor-associated antigens and are actively involved in bypassing immunotherapy with immune checkpoint inhibitors through integrating numerous environmental signals. A point here is that Tregs are clonally distinct in peripheral blood from tumor area. Currently, an effective and novel task in cancer immunotherapy is to selectively destabilize or deplete intra-tumoral Tregs in order to avoid systemic inflammatory events. Helios is a transcription factor expressed selectively by Tregs and promotes their stabilization, and Trps1 is a master regulator of intra-tumoral Tregs. Anti-CCR8 and the IL-2Rβγ agonist Bempegaldesleukin selectively target intra-tumoral Treg population, with the former approved to not elicit autoimmunity. Disarming Treg-related immunosuppression in tumors through diverting their reprogramming or promoting naïve T cell differentiation into cells with effector immune activating profile is another promising area of research in cancer immunotherapy. Blimp-1 inhibitors and glucocorticoid-induced TNFR-related protein agonists are example approaches that can be used for diverting Treg differentiation into Th1-like CD4+ T cells, thereby powering immunogenicity against cancer. Finally, selective target of intra-tumoral Tregs and their reprogramming into effector T cells is applicable using low-dose chemotherapy, and high-salt and high-tryptophan diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sun S, et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc Natl Acad Sci USA. 2020;117(44):27509–15.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mortezaee K, Majidpoor J. Alternative immune checkpoints in immunoregulatory profile of cancer stem cells. Heliyon. 2023;605:728.

    Google Scholar 

  3. Mair F, et al. Extricating human tumour immune alterations from tissue inflammation. Nature. 2022;605(7911):728–35.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schumann K, et al. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nat Immunol. 2020;21(11):1456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park T-Y, et al. Co-transplantation of autologous Treg cells in a cell therapy for Parkinson’s disease. Nature. 2023;619(7970):606–15.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bittner S, et al. Biosensors for inflammation as a strategy to engineer regulatory T cells for cell therapy. Proc Natl Acad Sci USA. 2022;119(40): e2208436119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rana J, et al. CAR-and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol Ther. 2021;29(9):2660–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu AX, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28(8):1599–611.

    Article  CAS  PubMed  Google Scholar 

  9. Xydia M, et al. Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients. Nat Commun. 2021;12(1):1119.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chuckran CA, et al. Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.abf8495.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wight AE, et al. Antibody-mediated blockade of the IL23 receptor destabilizes intratumoral regulatory T cells and enhances immunotherapy. Proc Natl Acad Sci USA. 2022;119(18): e2200757119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez RJ, et al. Type III interferon drives thymic B cell activation and regulatory T cell generation. Proc Natl Acad Sci USA. 2023;120(9): e2220120120.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matheu MP, et al. Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. Nat Commun. 2015;6(1):6219.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Seif F, et al. Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: molecular and therapeutic perspectives. Mol Ther Oncol. 2023;28:132.

    Article  CAS  Google Scholar 

  15. Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345–52.

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh S, et al. The transcription factor Foxp1 preserves integrity of an active Foxp3 locus in extrathymic Treg cells. Nat Commun. 2018;9(1):4473.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Somasundaram R, et al. Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nat Commun. 2021;12(1):346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Hooren L, et al. CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma. Nat Cancer. 2023. https://doi.org/10.1038/s43018-023-00547-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277: 119627.

    Article  CAS  PubMed  Google Scholar 

  20. Lauder SN, et al. Treg-driven tumour control by PI3Kδ inhibition limits myeloid-derived suppressor cell expansion. Br J Cancer. 2022;127(9):1595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Śledzińska A, et al. Regulatory T cells restrain interleukin-2-and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity. 2020;52(1):151–66.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang H, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costa A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33(3):463–79.

    Article  CAS  PubMed  Google Scholar 

  24. Sun R, et al. Amphiregulin couples IL1RL1+ regulatory T cells and cancer-associated fibroblasts to impede antitumor immunity. Sci Adv. 2023. https://doi.org/10.1126/sciadv.add7399.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun W, et al. A positive-feedback loop between tumour infiltrating activated Treg cells and type 2-skewed macrophages is essential for progression of laryngeal squamous cell carcinoma. Br J Cancer. 2017;117(11):1631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kitz A, Dominguez-Villar M. Molecular mechanisms underlying Th1-like Treg generation and function. Cell Mol Life Sci. 2017;74:4059–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Halim L, et al. An atlas of human regulatory T helper-like cells reveals features of Th2-like Tregs that support a tumorigenic environment. Cell Rep. 2017;20(3):757–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Gool F, et al. A mutation in the transcription factor Foxp3 drives T helper 2 effector function in regulatory T cells. Immunity. 2019;50(2):362–77.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Junius S, et al. Unstable regulatory T cells, enriched for naïve and Nrp1neg cells, are purged after fate challenge. Sci Immunol. 2021. https://doi.org/10.1126/sciimmunol.abe4723.

    Article  PubMed  Google Scholar 

  30. Xu Y, et al. Induction of Foxp3 and activation of Tregs by HSP gp96 for treatment of autoimmune diseases. iScience. 2021. https://doi.org/10.1016/j.isci.2021.103445.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hunt MS, et al. Dual-locus, dual-HDR editing permits efficient generation of antigen-specific, regulatory T cells with robust suppressive activity. Mol Ther. 2023. https://doi.org/10.1016/j.ymthe.2023.07.016.

    Article  PubMed  Google Scholar 

  32. Shi LZ. Trimming the “fatty” intratumoral Tregs for cancer immunotherapy. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.abb2770.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang H, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol. 2020;21(3):298–308.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhu G-Q, et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discovery. 2023;9(1):25.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang P, et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat Commun. 2022;13(1):5782.

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krzyzanowska AK, et al. Zbtb20 identifies and controls a thymus-derived population of regulatory T cells that play a role in intestinal homeostasis. Sci Immunol. 2022. https://doi.org/10.1126/sciimmunol.abf3717.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sawant DV, et al. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20(6):724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dambuza IM, et al. IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat Commun. 2017;8(1):719.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Wei X, et al. Reciprocal expression of IL-35 and IL-10 defines two distinct effector Treg subsets that are required for maintenance of immune tolerance. Cell Rep. 2017;21(7):1853–69.

    Article  CAS  PubMed  Google Scholar 

  40. Sullivan JA, et al. Treg-cell-derived IL-35-coated extracellular vesicles promote infectious tolerance. Cell Rep. 2020;30(4):1039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma M, et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 2020;11(1):661.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parisi G, et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat Commun. 2020;11(1):660.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Majidpoor J, Mortezaee K. Interleukin-2 therapy of cancer-clinical perspectives. Int Immunopharmacol. 2021;98: 107836.

    Article  CAS  PubMed  Google Scholar 

  44. Codarri Deak L, et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature. 2022;610(7930):161–72.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toomer KH, et al. Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. Nat Commun. 2019;10(1):1037.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. de Picciotto S, et al. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat Commun. 2022;13(1):3866.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Moro A, et al. Dynamic transcriptional activity and chromatin remodeling of regulatory T cells after varied duration of interleukin-2 receptor signaling. Nat Immunol. 2022;23(5):802–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long Y, et al. Dysregulation of glutamate transport enhances treg function that promotes VEGF blockade resistance in glioblastoma. Cancer Res. 2020;80(3):499–509.

    Article  CAS  PubMed  Google Scholar 

  49. Vargas FA, et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity. 2017;46(4):577–86.

    Article  Google Scholar 

  50. Overacre-Delgoffe AE, et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell. 2017;169(6):1130–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu Q, et al. Targeting neuropilin-1 abolishes anti-PD-1-upregulated regulatory T cells and synergizes with 4–1BB agonist for liver cancer treatment. Hepatology. 2023. https://doi.org/10.1097/HEP.0000000000000320.

    Article  PubMed  Google Scholar 

  52. Jeon SH, et al. CEACAM1 marks highly suppressive intratumoral regulatory T cells for targeted depletion therapy. Clin Cancer Res. 2023;29(9):1794–806.

    Article  CAS  PubMed  Google Scholar 

  53. Puthanmadhom Narayanan S, Huang Y, Owonikoko TK. Use of immune checkpoint gene (ICG) signatures to identify selective enrichment of FGL1 and CEACAM1 in histologic subtypes of lung cancer. Am Soc Clin Oncol. 2023. https://doi.org/10.1200/JCO.2023.41.16_suppl.e20527.

    Article  Google Scholar 

  54. Ma S, et al. RNA binding protein DDX5 restricts RORγt+ Treg suppressor function to promote intestine inflammation. Sci Adv. 2023. https://doi.org/10.1126/sciadv.add6165.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mortezaee K, Majidpoor J. The impact of hypoxia on extracellular vesicle secretome profile of cancer. Med Oncol. 2023;40(5):128.

    Article  PubMed  Google Scholar 

  56. Mortezaee K, Majidpoor J, Kharazinejad E. The impact of hypoxia on tumor-mediated bypassing anti-PD-(L) 1 therapy. Biomed Pharmacother. 2023;162: 114646.

    Article  CAS  PubMed  Google Scholar 

  57. Lee JH, Elly C, Park Y, Liu Y-C. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity. 2015;42(6):1062–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hsu T-S, et al. HIF-2α is indispensable for regulatory T cell function. Nat Commun. 2020;11(1):5005.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miska J, et al. HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma. Cell Rep. 2019;27(1):226–37.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garg G, et al. Blimp1 prevents methylation of Foxp3 and loss of regulatory T cell identity at sites of inflammation. Cell Rep. 2019;26(7):1854–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dixon ML, et al. Remodeling of the tumor microenvironment via disrupting Blimp1+ effector Treg activity augments response to anti-PD-1 blockade. Mol Cancer. 2021;20:1–24.

    Article  Google Scholar 

  62. Sidwell T, et al. Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat Commun. 2020;11(1):252.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alvisi G, et al. IRF4 instructs effector Treg differentiation and immune suppression in human cancer. J Clin Invest. 2020;130(6):3137–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cretney E, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol. 2011;12(4):304–11.

    Article  CAS  PubMed  Google Scholar 

  65. Karwacz K, et al. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation. Nat Immunol. 2017;18(4):412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ke S, et al. High-level of intratumoral GITR+ CD4 T cells associate with poor prognosis in gastric cancer. iScience. 2022. https://doi.org/10.1016/j.isci.2022.105529.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Amoozgar Z, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12(1):2582.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim YH, et al. Authentic GITR signaling fails to induce tumor regression unless Foxp3+ regulatory T cells are depleted. J Immunol. 2015;195(10):4721–9.

    Article  CAS  PubMed  Google Scholar 

  69. Amoozgar Z, et al. Abstract P057: targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Cancer Immunol Res. 2022;10:P057–P057.

    Article  Google Scholar 

  70. Yang R, et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021;12(1):832.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mahne AE, et al. Dual roles for regulatory T-cell depletion and costimulatory signaling in agonistic GITR targeting for tumor immunotherapy. Cancer Res. 2017;77(5):1108–18.

    Article  CAS  PubMed  Google Scholar 

  72. Yates K, et al. Comparative transcriptome analysis reveals distinct genetic modules associated with Helios expression in intratumoral regulatory T cells. Proc Natl Acad Sci USA. 2018;115(9):2162–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Muto S, et al. Clinical features of transcriptional factor Helios expression on regulatory T cells in patients with non-small cell lung cancer. Cancer Res. 2015;75:1280–1280.

    Article  Google Scholar 

  74. Kim H-J, et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science. 2015;350(6258):334–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang ES, et al. Acute pharmacological degradation of Helios destabilizes regulatory T cells. Nat Chem Biol. 2021;17(6):711–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nakagawa H, et al. Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity. Proc Natl Acad Sci USA. 2016;113(22):6248–53.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kidani Y, et al. CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc Natl Acad Sci USA. 2022;119(7): e2114282119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang W, et al. Steroid nuclear receptor coactivator 2 controls immune tolerance by promoting induced Treg differentiation via up-regulating Nr4a2. Sci Adv. 2022. https://doi.org/10.1126/sciadv.abn7662.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Han SJ, et al. Steroid receptor coactivator 3 is a key modulator of regulatory T cell–mediated tumor evasion. Proc Natl Acad Sci USA. 2023;120(23): e2221707120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Charehjoo A, Majidpoor J, Mortezaee K. Indoleamine 2, 3-dioxygenase 1 in circumventing checkpoint inhibitor responses: updated. Int Immunopharmacol. 2023;118: 110032.

    Article  CAS  PubMed  Google Scholar 

  81. Rankin LC, et al. Dietary tryptophan deficiency promotes gut RORγt+ Treg cells at the expense of Gata3+ Treg cells and alters commensal microbiota metabolism. Cell Rep. 2023. https://doi.org/10.1016/j.celrep.2023.112135.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan–kynurenine–aryl hydrocarbon axis. Clin Cancer Res. 2019;25(5):1462–71.

    Article  CAS  PubMed  Google Scholar 

  83. Campesato LF, et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by l-Kynurenine. Nat Commun. 2020;11(1):4011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Obradovic A, et al. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell. 2023;41(5):933–49.

    Article  CAS  PubMed  Google Scholar 

  85. Webb ER, et al. Cyclophosphamide depletes tumor infiltrating T regulatory cells and combined with anti-PD-1 therapy improves survival in murine neuroblastoma. iScience. 2022. https://doi.org/10.1016/j.isci.2022.104995.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang YH, et al. Salt sensing by serum/glucocorticoid-regulated kinase 1 promotes Th17-like inflammatory adaptation of Foxp3+ regulatory T cells. Cell Rep. 2020;30(5):1515–29.

    Article  CAS  PubMed  Google Scholar 

  87. Fernandes Corte-Real B, et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 2023;35(2):299–315.

    Article  Google Scholar 

  88. Luo Y, et al. Negligible effect of sodium chloride on the development and function of TGF-β-induced CD4+ Foxp3+ regulatory T cells. Cell Rep. 2019;26(7):1869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Moon J-S, et al. Lrig1-expression confers suppressive function to CD4+ cells and is essential for averting autoimmunity via the Smad2/3/Foxp3 axis. Nat Commun. 2023;14(1):5382.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elyahu Y, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019. https://doi.org/10.1126/sciadv.aaw8330.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kos K, et al. Tumor-educated Tregs drive organ-specific metastasis in breast cancer by impairing NK cells in the lymph node niche. Cell Rep. 2022. https://doi.org/10.1016/j.celrep.2022.110447.

    Article  PubMed  Google Scholar 

Download references

Funding

The author has not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keywan Mortezaee.

Ethics declarations

Conflict of interest

The author has not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezaee, K. Selective targeting or reprogramming of intra-tumoral Tregs. Med Oncol 41, 71 (2024). https://doi.org/10.1007/s12032-024-02300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02300-0

Keywords

Navigation