Skip to main content

Advertisement

Log in

Vasohibin-1 and vasohibin-2 expression in gastric cancer cells and TAMs

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that TAMs contribute to tumor progression. Recently, vasohibin-1 and vasohibin-2 were detected in endothelial cells and considered as intrinsic angiogenesis inhibitors. However, it is not known whether they are also expressed in cancer cells or tumor-associated macrophages (TAMs). Realtime RT-PCR was used to investigate the vasohibin-1 and vasohibin-2 expression in four gastric cancer cell lines, including a non-metastatic cell line AGS, and metastatic cell lines HGC-27, Hs-746T and NCI-N87, co-cultured with or without TAMs. The effect of hypoxic conditions on vasohibin expression was evaluated as well, and the correlation between vasohibin-1, vasohibin-2 and VEGF-A expression under different culture conditions was analyzed. We found that both vasohibin-1 and vasohibin-2 were expressed in the four gastric cancer cell lines and in TAMs. Under normal conditions, vasohibin-1 and vasohibin-2 expressions were significantly upregulated by TAMs in all the gastric cancer cell lines. Under hypoxia, both vasohibin-1 and vasohibin-2 expressions were significantly decreased in the distant metastasis cancer cell line Hs-746T, cultured with or without TAMs (P < 0.001). After induction by TAMs or hypoxia, the vasohibin-1 and vasohibin-2 expressions correlated with that of VEGF-A. In addition, TAMs, when co-cultured with the metastatic cancer cell lines, showed hypoxia-induced vasohibin-1 upregulation (P < 0.05). In conclusion, both vasohibin-1 and vasohibin-2 mRNA are expressed in gastric cancer cells and in TAMs, and their expressions are altered by hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. SEER Cancer Statistics Review (1975–2008) http://seer.cancer.gov/csr/1975_2008/results_merged/topic_survival.pdf.

  3. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture. Cancer Res. 1986;46:467–73.

    PubMed  CAS  Google Scholar 

  4. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6.

    Article  PubMed  CAS  Google Scholar 

  5. Kitadai Y. Angiogenesis and lymphangiogenesis of gastric cancer. J Oncol. 2010;2010:468725.

    Article  PubMed  Google Scholar 

  6. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–8.

    Article  PubMed  CAS  Google Scholar 

  7. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999;9:211–20.

    Article  PubMed  CAS  Google Scholar 

  8. Sugiura T, Inoue Y, Matsuki R, Ishii K, Takahashi M, Abe M, Shirasuna K. VEGF-C and VEGF-D expression is correlated with lymphatic vessel density and lymph node metastasis in oral squamous cell carcinoma: implications for use as a prognostic marker. Int J Oncol. 2000;34:673–80.

    Google Scholar 

  9. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79:315–28.

    Article  PubMed  Google Scholar 

  10. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277–85.

    Article  PubMed  Google Scholar 

  11. O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science. 1999;285:1926–8.

    Article  PubMed  Google Scholar 

  12. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol. 1993;122:497–511.

    Article  PubMed  CAS  Google Scholar 

  13. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285:245–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kerbel RS. Vasohibin as an endothelium derived negative feedback regulator of angiogenesis. J Clin Invest. 2004;114:884–6.

    PubMed  CAS  Google Scholar 

  15. Nasu T, Maeshima Y, Kinomura M, Hirokoshi-Kawahara K, Tanabe K, Sugiyama H, Sonoda H, Sato Y, Makino H. Vasohibin-1, a negative feedback regulator of angiogenesis, ameliorates renal alterations in a mouse model of diabetic nephropathy. Diabetes. 2009;58:2365–75.

    Article  PubMed  CAS  Google Scholar 

  16. Shen J, Yang X, Xiao WH, Hackett SF, Sato Y, Campochiaro PA. Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J. 2006;20:723–5.

    PubMed  CAS  Google Scholar 

  17. Yoshinaga K, Ito K, Moriya T, Nagase S, Takano T, Niikura H, Yaegashi N, Sato Y. Expression of vasohibin as a novel endothelium-derived angiogenesis inhibitor in endometrial cancer. Cancer Sci. 2008;99:914–9.

    Article  PubMed  CAS  Google Scholar 

  18. Tamaki K, Sasano H, Maruo Y, Takahashi Y, Miyashita M, Moriya T, Sato Y, Hirakawa H, Tamaki N, Watanabe M, Ishida T, Ohuchi N. Vasohibin-1 as a potential predictor of aggressive behavior of ductal carcinoma in situ of the breast. Cancer Sci. 2010;101:1051–8.

    Article  PubMed  CAS  Google Scholar 

  19. Hosaka T, Kimura H, Heishi T, Suzuki Y, Miyashita H, Ohta H, Sonoda H, Moriya T, Suzuki S, Kondo T, Sato Y. Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am J Pathol. 2009;175:430–9.

    Article  PubMed  Google Scholar 

  20. Shibuya T, Watanabe K, Yamashita H, Shimizu K, Miyashita H, Abe M, Moriya T, Ohta H, Sonoda H, Shimosegawa T, Tabayashi K, Sato Y. Isolation of vasohibin-2 as a sole homologue of VEGF inducible endothelium-derived angiogenesis inhibitor vasohibin: a comparative study on their expressions. Arterioscler Thromb Vasc Biol. 2006;26:1051–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kimura H, Miyashita H, Suzuki Y, Kobayashi M, Watanabe K, Sonoda H, Ohta H, Fujiwara T, Shimosegawa T, Sato Y. Distinctive localization and opposed roles of vasohibin-1 and vasohibin-2 in the regulation of angiogenesis. Blood. 2009;113:4810–8.

    Article  PubMed  CAS  Google Scholar 

  22. Mantovani A, Allavena P, Sica A. Balkwill inflammation. Nature. 2008;454:436–44.

    Article  PubMed  CAS  Google Scholar 

  23. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  PubMed  CAS  Google Scholar 

  24. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed  CAS  Google Scholar 

  25. Lewis CE, Hughes R. Inflammation and breast cancer. Micro environmental factors regulating macrophage function in breast tumors: hypoxia and angiopoietin-2. Breast Cancer Res. 2007;9:209.

    Article  PubMed  Google Scholar 

  26. Gottfried E, Faust S, Fritsche J, Kunz-Schughart LA, Andreesen R, Miyake K, Kreutz M. Identification of genes expressed in tumor-associated macrophages. Immunobiology. 2003;207:351–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hosaka T, Kimura H, Heishi T, Suzuki Y, Miyashita H, Ohta H, Sonoda H, Moriya T, Suzuki S, Kondo T, Sato Y. Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am J Pathol. 2009;175:430–9.

    Article  PubMed  Google Scholar 

  28. Kimura H, Miyashita H, Suzuki Y, Kobayashi M, Watanabe K, Sonoda H, Ohta H, Fujiwara T, Shimosegawa T, Sato Y. Distinctive localization and opposed roles of vasohibin-1 and vasohibin-2 in the regulation of angiogenesis. Blood. 2009;13:4810–8.

    Article  Google Scholar 

  29. Chen J, De S, Brainard J, Byzova TV. Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes. 2004;11:1–11.

    Article  PubMed  Google Scholar 

  30. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M, Ohta H, Imagawa K, Hojo K, Maki H, Sonoda H, Sato Y. Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest. 2004;114:898–907.

    PubMed  CAS  Google Scholar 

  32. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.

    Article  PubMed  CAS  Google Scholar 

  33. Folkman J. Endogenous angiogenesis inhibitors. APMIS. 2004;112:496–507.

    Article  PubMed  CAS  Google Scholar 

  34. Kerr DJ. Targeting angiogenesis in cancer: clinical development of bevacizumab. Nat Clin Pract Oncol. 2004;1:39–43.

    Article  PubMed  CAS  Google Scholar 

  35. AVAGAST Trial. Bevacizumab Disappoints in Gastric Cancers, but May Have Benefit. http://www.medconnect.com.sg/tabid/92/ct1/c37173/AVAGAST-Trial-Bevacizumab-Disappoints-in-Gastric-Cancers-but-May-Have-Benefit/Default.aspx.

Download references

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanlong Shen, Shan Wang or Pauli Puolakkainen.

Additional information

H. Mustonen and P. Puolakkainen have the equal last authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Z., Kauttu, T., Seppänen, H. et al. Vasohibin-1 and vasohibin-2 expression in gastric cancer cells and TAMs. Med Oncol 29, 2718–2726 (2012). https://doi.org/10.1007/s12032-012-0212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-012-0212-1

Keywords

Navigation