A cold change: how short low temperature exposure affects primary metabolism in leaves and stems of two eucalyptus species

Author:

Domingues-Junior Adilson PereiraORCID,Daloso Danilo de Menezes,Machado Mariana,Rosado-Souza Laíse,de Souza Leonardo Perez,Fernie Alisdair Robert,Mazzafera Paulo

Abstract

AbstractPlants often modify their metabolism in order to regain homeostasis and maintain survival in the face of stressful conditions. Here, two species of eucalyptus, E. globulus and E. grandis (adapted and non-adapted to low temperature, respectively), were exposed to either 10 °C or 25 °C over 24 h, and changes in gene expression and metabolite levels were analyzed. The aim of this experiment was to investigate the dynamic of short period changes in the energy metabolism of source (leaves) and sink (stem) tissues in these contrasting species regarding low temperature. We expected to observe a distinct pattern on carbon metabolism and source-to-sink relationship between both species which would be related to their different vegetative responses when facing low temperatures. In that way, E. globulus plants showed a differential expression in leaves and stems of SnRK1 genes system (responsible for energy availability control in plants), that was strongly associated to the changes in carbon metabolism and the main difference between the response when both species face cold. Taken together, the results suggest that low temperatures (10 °C) are able to increase the sink strength of stem tissues and the carbon assimilation in leaves of E. globulus, supporting a higher vegetative growth rate. In E. grandis, on the other hand, exposure to 10 °C promoted a higher consumption of carbon skeletons without better growth rate as a counterpart, suggesting that under cold conditions, these two eucalyptus species differ in the way they coordinate the interaction between the activation of SnRK1 system and primary metabolism in source and sink tissues.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3