Harnessing Biomaterials for Immunomodulatory-Driven Tissue Engineering

Author:

Zhong Justin X.ORCID,Raghavan PreethiORCID,Desai Tejal A.ORCID

Abstract

Abstract The immune system plays a crucial role during tissue repair and wound healing processes. Biomaterials have been leveraged to assist in this in situ tissue regeneration process to dampen the foreign body response by evading or suppressing the immune system. An emerging paradigm within regenerative medicine is to use biomaterials to influence the immune system and create a pro-reparative microenvironment to instigate endogenously driven tissue repair. In this review, we discuss recent studies that focus on immunomodulation of innate and adaptive immune cells for tissue engineering applications through four biomaterial-based mechanisms of action: biophysical cues, chemical modifications, drug delivery, and sequestration. These materials enable augmented regeneration in various contexts, including vascularization, bone repair, wound healing, and autoimmune regulation. While further understanding of immune-material interactions is needed to design the next generation of immunomodulatory biomaterials, these materials have already demonstrated great promise for regenerative medicine. Lay Summary The immune system plays an important role in tissue repair. Many biomaterial strategies have been used to promote tissue repair, and recent work in this area has looked into the possibility of doing repair by tuning. Thus, we examined the literature for recent works showcasing the efficacy of these approaches in animal models of injuries. In these studies, we found that biomaterials successfully tuned the immune response and improved the repair of various tissues. This highlights the promise of immune-modulating material strategies to improve tissue repair.

Funder

National Science Foundation

American Heart Association

NHLBI Division of Intramural Research

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3