A Feedforward Neural Network for Modeling of Average Pressure Frequency Response

Author:

Pettersson Klas,Karzhou Andrei,Pettersson Irina

Abstract

AbstractThe Helmholtz equation has been used for modeling the sound pressure field under a harmonic load. Computing harmonic sound pressure fields by means of solving Helmholtz equation can quickly become unfeasible if one wants to study many different geometries for ranges of frequencies. We propose a machine learning approach, namely a feedforward dense neural network, for computing the average sound pressure over a frequency range. The data are generated with finite elements, by numerically computing the response of the average sound pressure, by an eigenmode decomposition of the pressure. We analyze the accuracy of the approximation and determine how much training data is needed in order to reach a certain accuracy in the predictions of the average pressure response.

Funder

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. J. Adler and O. Öktem. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Problems, 33(12):124007, 2017

2. Allaire, G.: Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Oxford University Press, Oxford (2007)

3. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

4. Alnæs, M. S., et al.: The fenics project version 15. Arch. Numer. Softw., 3(100), 9-23 2015

5. Baymani, M., Effati, S., Kerayechian, A.: A feed-forward neural network for solving stokes problem. Acta Appl. Math. 116(1), 55 (2011)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3