Effect of time and voltage on the morphology of TiO2 films produced by anodization

Author:

Yılmaz OzanORCID,Ebeoglugil Faruk,Dikici Tuncay,Dalmis Ramazan

Abstract

AbstractThis study investigates the influence of various anodic oxidation parameters on the photocatalytic activities of the nanostructured titanium dioxide (TiO2) films. TiO2 films were prepared by anodic oxidation of titanium substrate using 1 M Na2SO4 / 5 wt. % NH4F electrolyte, and then annealed at 500 °C. Anatase appears in all calcined samples. The anodic oxidation process was performed in two steps at different voltages (5–80 V) and times (15–480 min) to reveal the relationship between the surface morphologies, wettability and photocatalytic properties. The results showed that the voltage and anodization time can play important role in the surface morphology of nanostructured TiO2 films and thus in various properties. While 40 V showed the most efficient photocatalytic degradation among voltage values, 60 min was the most efficient time for photocatalytic degradation efficiency and lowest contact angle. In addition, a pore area fraction of 39.54%, equal diameter of 96.81 nm, and circularity of 66.7% were obtained from image analysis of the 60-min anodized sample. While increasing the voltage and time benefited up to a point in terms of photocatalytic efficiency, changes in morphology had a negative effect after a point. At low voltage and time values, small pore diameters result in low photocatalytic properties. This titania can be readily utilize to meet application expectations in areas such as gas sensors, photocatalysis and photovoltaic cells.

Funder

Dokuz Eylül University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3