The role of nanoparticles inclusion in monitoring the physical properties of PVDF

Author:

Ismail A. M.,Ramadan RaniaORCID,El-Masry Mai M.

Abstract

AbstractIn this work, the effects of CoxZn1-x Fe2O4 (x= 0, 0.5, 1) nanofillers on the PVDF polymer were scientifically studied. The structure and magnetic and optical properties were studied. XRD confirms the synthesis of nanofiller in a single phase. FTIR confirms the formation of nanoferrites. HRTEM shows that the prepared nanoferrites have a cubic-like shape. Also, the size and agglomeration increase with Co-Zn Fe2O4 nanoferrites compared to the other singles one. The effect of adding nanoferrites into PVDF matrix was studied using XRD, FTIR, FESEM, VSM, and UV-Vis. XRD and FTIR approved the complexation between PVDF polymer and nanoferrites. Also, addition of nanoferrites into PVDF leads to decrease the semi-crystalline nature of PVDF. FESEM showed that embedding nanoferrites into PVDF polymers creates pores and PVDF/Co-Zn Fe2O4 increases the pore size on the PVDF surface. The magnetic properties of PVDF were enhanced by adding the nanofiller. For example, saturation magnetization was increased from 269.31E−6 to 62.052E−3 by adding CoFe2O4 to PVDF polymer. Band gap calculation showed that PVDF/Co-Zn Fe2O4 has the lowest band gap energy which makes it useful in photochemical and electronic applications.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3