Dissolution control and stability improvement of silica nanoparticles in aqueous media

Author:

Spitzmüller LauraORCID,Nitschke Fabian,Rudolph Bastian,Berson Jonathan,Schimmel Thomas,Kohl Thomas

Abstract

Abstract Silica nanoparticles have become an important tool in material sciences, nanomedicine, biotechnology, and pharmaceutics, with recent suggested applications also in environmental sciences. In life and environmental sciences, the application field is usually aqueous media; however, the crucial issue of silica nanoparticle dissolution behavior and rate in the target medium is often neglected, overlooked, or taken for granted. Silica nanoparticles are not stable in aqueous solutions until equilibrium silica concentrations are reached. While for life science applications, the degradability of silica nanoparticles is prerequisite for biocompatibility, this characteristic impedes the successful application of silica nanoparticles as environmental tracer, where long-term stability is needed. In this study, the impact of external (temperature, pH values, salinity, availability of silica) and internal (degree of condensation, size, porosity) parameters on the stability of ~ 45-nm-sized silica nanoparticles is characterized. Results show that external factors such as elevated temperature and alkaline pH-values accelerate the dissolution, acidic pH, high salinities, and high initial silica concentrations exhibit a contrary effect. Consequently, in applications, where external parameters cannot be controlled (e.g., in vivo, subsurface reservoirs), dissolution control and stability improvement of silica nanoparticles can be achieved by various means, such as adding a protective layer or by condensation of the silanol bonds through calcination. Graphical abstract

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3