A Comparative Study of Effects of Biodegradable and Non-biodegradable Microplastics on the Growth and Development of Black Soldier Fly Larvae (Hermetia illucens)

Author:

Heussler Carina D.ORCID,Dittmann Isabel L.ORCID,Egger BernhardORCID,Robra SabineORCID,Klammsteiner ThomasORCID

Abstract

Abstract Purpose This study aimed to investigate the digestion process of biodegradable and non-biodegradable microplastics (MPs) within black soldier fly larvae (BSFL) and assess their impact on larval growth and development. The goal was to understand the fate of MPs within BSFL, considering their potential for waste conversion polluted with MPs. Methods BSFL were exposed to two types of MPs, and their growth, development, potential accumulation and excretion of MPs were monitored. Results The findings revealed that the MPs accumulated solely in the larval gut and had no adverse effects on the growth and development of BSFL. Larvae efficiently excreted MPs before reaching the pupation stage. Conclusion This research emphasizes the potential of BSFL as a bioconversion agent for organic waste, even in the presence of MPs. The effective excretion of MPs by BSFL before pupation suggests their ability to mitigate potential harm caused by MP accumulation. The fact that BSFL may excrete MPs before pupation would contribute to their safe use as animal feedstock. A careful evaluation of the effects of using BSFL reared on contaminated substrates especially containing visually non-detectable residuals like nanoplastics, chemicals or toxic metals and further examination of the broader implications for waste management and sustainable livestock farming remains important. Graphical Abstract Experimental design outlining the workflow for the analyses used to investigate the effect of two types of microplastics, polyamide (PA), and polylactic acid (PLA), on growth and development of black soldier fly larvae.

Funder

DOC

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3