A practical utility-based but objective approach to model selection for regression in scientific applications

Author:

Murari Andrea,Rossi Riccardo,Spolladore Luca,Lungaroni Michele,Gaudio Pasquale,Gelfusa Michela

Abstract

AbstractIn many fields of science, various types of models are available to describe phenomena, observations and the results of experiments. In the last decades, given the enormous advances of information gathering technologies, also machine learning techniques have been systematically deployed to extract models from the large available databases. However, regardless of their origins, no universal criterion has been found so far to select the most appropriate model given the data. A unique solution is probably a chimera, particularly in applications involving complex systems. Consequently, in this work a utility-based approach is advocated. However, the solutions proposed are not purely subjective but all based on “objective” criteria, rooted in the properties of the data, to preserve generality and to allow comparative assessments of the results. Several methods have been developed and tested, to improve the discrimination capability of basic Bayesian and information theoretic criteria, with particular attention to the BIC (Bayesian Information Criterion) and AIC (Akaike Information Criterion) indicators. Both the quality of the fits and the evaluation of model complexity are aspects addressed by the advances proposed. The competitive advantages of the individual alternatives, for both cross sectional data and time series, are clearly identified, together with their most appropriate fields of application. The proposed improvements of the criteria allow selecting the right models more reliably, more efficiently in terms of data requirements and can be adjusted to very different circumstances and applications. Particular attention has been paid to ensure that the developed versions of the indicators are easy to implement in practice, in both confirmatory and exploratory settings. Extensive numerical tests have been performed to support the conceptual and theoretical considerations.

Funder

Università degli Studi di Roma Tor Vergata

Publisher

Springer Science and Business Media LLC

Reference68 articles.

1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.1974.1100705

2. Amari S, Nagaoka H (2000) Methods of Information Geometry. Oxford University Press, Oxford

3. Ando T (2010) Bayesian model selection and statistical modeling. CRC Press, Boca Raton

4. Arndt, C. (2004). Information Measures, Information and its Description in Science and Engineering. Springer Series: Signals and Communication Technology. doi:978–3–540–40855–0

5. Åström KJ, Murray RM (2008) What is feedback?", Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3