Evaluation of hemorrhagic shock and fluid resuscitation in pigs using handless Doppler carotid artery ultrasound

Author:

Zhao Xiaoli,Yuan Wei,Wang Shuo,Wu Junyuan,Li ChunshengORCID

Abstract

Abstract Objective This study aimed to utilize a hemorrhagic shock pig model to compare two hemodynamic monitoring methods, pulse index continuous cardiac output (PiCCO) and spectral carotid artery Doppler ultrasound (CDU). Additionally, we sought to explore the feasibility of employing CDU as a non-invasive hemodynamic monitoring tool in the context of hemorrhagic shock and fluid resuscitation. Design Animal experiments. Setting and subjects Female pigs were selected, and hemorrhagic shock was induced by rapid bleeding through an arterial sheath. Interventions Hemodynamic monitoring was conducted using both PiCCO and CDU during episodes of hemorrhagic shock and fluid resuscitation. Measurements and main results Among the 10 female pigs studied, CDU measurements revealed a significant decrease in carotid velocity time integral (cVTI) compared to baseline values under shock conditions. During the resuscitation phase, after the mean arterial pressure (MAP) returned to its baseline level, there was no significant difference between cVTI and baseline values. A similar trend was observed for carotid peak velocity (cPV). The corrected flow time (FTc) exhibited a significant difference only at the time of shock compared to baseline values. In comparison to PiCCO, there was a significant correlation between cVTI and MAP (r = 0.616, P < 0.001), stroke volume (SV) (r = 0.821, P < 0.001), and cardiac index (CI) (r = 0.698, P < 0.001). The carotid Doppler shock index (cDSI) displayed negative correlations with MAP (r =  − 0.593, P < 0.001), SV (r =  − 0.761, P < 0.001), and CI (r =  − 0.548, P < 0.001), while showing a positive correlation with the shock index (SI) (r = 0.647, P < 0.001). Conclusions Compared to PiCCO, CDU monitoring can reliably reflect the volume status of hemorrhagic shock and fluid resuscitation. CDU offers the advantages of being non-invasive, providing real-time data, and being operationally straightforward. These characteristics make it a valuable tool for assessing and managing hemorrhagic shock, especially in resource-limited settings.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3