Artificial Neural Network or Empirical Criteria? A Comparative Approach in Evaluating Maximum Charge per Delay in Surface Mining - Sungun Copper Mine

Author:

Alipour A.1,Mokhtarian M.2,Sharif J. Abdollahei3

Affiliation:

1. Department of Mining Engineering 1 ,  Urmia University of Technology, West Azerbaijan ,

2. Department of Mining Engineering 2 ,  Urmia University of Technology, West Azerbaijan ,

3. Department of Mining Engineering 3 ,  University of Urmia, West Azerbaijan ,

Abstract

Abstract Ground vibration due to blasting causes damages in the existence of the surface structures nearby the mine. The study of vibration control plays an important role in minimizing environmental effects of blasting in mines. Ground vibration regulations primarily rely on the peak particle velocity (PPV, mm/s). Prediction of maximum charge weight per delay (Q, kg) by distance from blasting face up to vibration monitoring point as well as allowable PPV was proposed in order to perform under control blasting and therefore avoiding damages on structures nearby the mine. Various empirical predictor equations have proposed to determine the PPV and maximum charge per delay. Maximum charge per delay is calculated by using PPV predictors indirectly or Q predictor directly. This paper presents the results of ground vibration measurement induced by bench blasting in Sungun copper mine in Iran. The scope of this study is to evaluate the capability of two different methods in order to predict maximum charge per delay. A comparison between two ways of investigations including empirical equations and artificial neural network (ANN) are presented. It has been shown that the applicability of ANN method is more promising than any under study empirical equations.

Publisher

Geological Society of India

Reference29 articles.

1. Study of geomechanical parameters on tunnel blasting results using ANNs,(2007)

2. Investigation of seismic wave due to blasting, in Sungun copper mine,(2006)

3. Development of a model to predict peak particle velocity in a blasting operation, Internat;Jour. Rock Mechanics and Mining Sci,(2011)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3