A computational approach to integrate three-dimensional peridynamics and two-dimensional higher-order classical elasticity theory for fracture analysis

Author:

Zhang Jing,Enea Marco,Pagani Alfonso,Carrera Erasmo,Madenci Erdogan,Liu Xia,Yang Qingsheng

Abstract

AbstractAs a nonlocal alternative of classical continuum theory, peridynamics (PD) is mathematically compatible to discontinuities, making it particularly attractive for failure prediction. The PD theory on the other side can be computationally demanding due to its nonlocal interactions. A coupling between PD and refined higher-order finite element method (FEM) integrates their salient features. The present study proposes a computational approach to couple three-dimensional peridynamics with two-dimensional higher-order finite elements based on classical elasticity. The bond-based PD modeling is considered in a region where damage might appear while refined finite element modeling is used for the remaining region. The refined finite elements employed in this study are based on the 2D Carrera Unified Formulation (CUF), which provides 3D-like accuracy with optimized computational efficiency. The coupling between PD and FEM is achieved through the Lagrange multiplier method which permits physical consistency and compatibility at the interface domain. An adaptive convergence check algorithm is also proposed to achieve predetermined accuracy in the solution with minimum computational effort. Simulations of quasi-static tension tests, wedge splitting tests and L-plate cracking tests are carried out for verification. In-depth analysis shows that the present approach can reproduce the linear deformation, material degradation and crack propagation in an effective way.

Funder

China Scholarship Council

Italian Ministry of University and Research under the programme FARE - Project LOUD

National Natural Science Foundation of China

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3