Study of Nano-Powell-Erying fluid flow past a porous stretching sheet by the effects of MHD, thermal and mass convective boundary conditions

Author:

Gundagani Murali,Babu N. V. N.,Gadially Deepa,Bhati S. M.,Ch Sanjay,Nirmala Kasturi V.

Abstract

AbstractThe object of this research is to examine the combined effects of mass and thermal Biot numbers on the properties of a Powell-Erying fluid flow that is two-dimensional, constant, viscous, incompressible, and non-Newtonian. In the direction of the flow is an extending sheet encircled by a porous medium. Further consideration is given to the existence of a chemical reaction, thermophoresis, Brownian motion, and velocity lapse, among other factors. Utilizing the Powell-Erying Cauchy non-Newtonian model, the viscoelastic effect is accounted for. When establishing concentration and temperature boundary conditions, thermal and mass Biot numbers are incorporated. By utilizing graphs, one can examine the impacts of a variety of engineering parameters on concentration profiles, velocity, and temperature. This is accomplished through the implementation of numerical solutions derived via the Runge–Kutta method. By utilizing graphs, one can examine the impacts of a variety of engineering parameters on concentration profiles, velocity, and temperature. This is accomplished through the implementation of numerical solutions derived via the Runge–Kutta method. Furthermore, the Nusselt number, Skin-friction, and Sherwood number coefficients are evaluated and shown in a tabular format utilizing the same parameters. In the end, the numerical outcomes obtained from this investigation are substantiated and considered to be highly consistent with the findings that were previously documented.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3