Electrochemical treatment of wastewater to remove contaminants from the production and disposal of plastics: a review

Author:

Malinović Borislav N.,Markelj Jernej,Žgajnar Gotvajn Andreja,Kralj Cigić Irena,Prosen HelenaORCID

Abstract

AbstractWastewater is major source of contaminants originating from the production, usage, and disposal of plastic materials. Due to their poor biodegradability of these contaminants in municipal wastewater treatment plants, additional advanced oxidation processes such as electrochemical treatments have been developed to improve the standard biological treatment. Here we review the applications of electrochemical treatments of wastewater for the removal of the following plastic contaminants: bisphenol A, phthalic acid esters, and benzotriazoles. We present the effectiveness of treatment in terms of contaminant removal and mineralization; the identification of transformation products; toxicity assessment; and process energy requirements. In the present review, we have focused on the applications of electrochemical treatments of wastewater for the removal of three important groups of contaminants originating mainly from plastics: bisphenol A, phthalic acid esters, and benzotriazoles. The review focuses on the research of electrochemical treatments for these contaminants from the last five years. The papers are assessed from the point of i) effectiveness of treatment in terms of contaminant removal and mineralization; ii) identification of transformation products; iii) toxicity assessment; iv) processes’ energy requirements. Electrochemical treatments were confirmed to be a viable option for the removal of selected contaminants from wastewater.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Ministry of Scientific and Technological Development, Higher Education and Information Society

Publisher

Springer Science and Business Media LLC

Subject

Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3