Hydrological risk assessment for Mangla Dam: compound effects of instant flow and precipitation peaks under climate change, using HEC-RAS and HEC-GeoRAS

Author:

Ahmad Izhar,Waseem Muhammad,Ashraf Ammar,Leta Megersa Kebede,Ahmad Sareer,Wahab Hira

Abstract

AbstractDams play a pivotal role in water resource management by storing and supplying water for a multitude of purposes. However, the looming threat of dam breach floods necessitates meticulous research and the simulation of potential failure scenarios. These endeavors are essential not only for comprehending the gravity of dam break floods but also for identifying vulnerable regions and informing emergency response strategies and land-use planning initiatives. This study employs a two-dimensional hydraulic model within the HEC-RAS (Hydrologic Engineering Center and River Analysis System) software to conduct an extensive dam breach analysis specifically focusing on the Mangla Dam located in Azad Kashmir, Pakistan. The analysis encompasses the prediction of various breach parameters, including the hydrograph of the breach flood, peak flow rates, arrival times of the flood, and the creation of inundation maps. Of primary concern is the Probable Maximum Floo, which drives the dam collapse model under unsteady flow conditions, accounting for both piping and overtopping failure scenarios. This study discerns the breach outflow hydrograph through the utility of HEC-RAS tools and evaluates hydraulic conditions at critical downstream locations. To dynamically route flood waves, the breach outflow hydrographs are harnessed. Furthermore, the HEC-RAS model is executed with breach parameters derived from five distinct empirical approaches, with ensuing outcomes subjected to rigorous comparative analysis. A comprehensive sensitivity study pertaining to breach parameters is also carried out to ascertain the sensitivity of peak flow and maximum stage. The results reveal peak flow rates of 174,850 m3/s and 177,850 m3/s in the downstream vicinity adjacent to the dam, translating into corresponding flooded areas of 379 km2 and 394 km2 attributable to piping and overtopping failures, respectively. The analysis of Land Use Land Cover data demonstrates that in the event of piping failure, 217 km2 of agricultural land and 56 km2 of urban areas would be completely submerged. Conversely, overtopping failure would inundate 220 km2 of agricultural land and 59 km2 of urban areas. The utilization of advanced remote sensing data, combined with flood modeling insights, equips engineers and stakeholders with invaluable knowledge. This knowledge, in turn, underpins strategic planning and well-informed decision-making processes, essential for addressing the potential global repercussions of similar catastrophes.

Funder

Universität Rostock

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3