Internet of robotic things with a local LoRa network for teleoperation of an agricultural mobile robot using a digital shadow

Author:

Shamshiri Redmond R.,Navas Eduardo,Dworak Volker,Schütte Tjark,Weltzien Cornelia,Cheein Fernando A. Auat

Abstract

AbstractIn unstructured agricultural fields where autonomous navigation is challenging and demands additional safety, the operator’s experience and knowledge are essential for supervising operations and making decisions beyond the robot’s autonomous capabilities. Local networks with long-range wireless communication combined with digital twin concepts are promising solutions that can be used for robot teleoperation. The purpose of this study was to demonstrate the feasibility of supervising a mobile robot inside berry orchards using a digital shadow from a long-range distance (between 300 and 3000 m), with the primary objective of assisting the robot in navigating in complex situations such as row-end turning. This involved creating a virtual representation of the robot that mirrors its state and actions, allowing the remote operator to monitor and guide the robot effectively. The system comprised a GPS-based navigation controller with collision avoidance sensors, two sets of LoRa transmitters and repeaters, a simulation environment with a digital shadow of the robot, and a graphical user interface for the remote operator. Information about the digital shadow’s state, including location, orientation, and distances to obstacles, was received as a message by the LoRa gateway and was used to update the path for the actual robot that interfaced with the Robot Operating System (ROS). The main research hypothesis aimed to test the quality of the LoRa communication link between the robot and the operator, as well as the robustness of the robot’s control system, with an emphasis on the architecture, communication link, and situation awareness creation. Preliminary results showed that depending on the environment, the average packet loss was 12% at distances of approximately 2300 m. Our results highlight some of the core technical challenges that need to be addressed for an effective teleoperation system, including latency, stability, and the limited range of wireless communication. Future works involves evaluating the performance and reliability of the proposed method under different field conditions and scenarios, as well as considering the use of the 5G network for a significant improvement in data transmission speed, navigation efficiency, and visual feedback. Upon successful implementation, this study has the potential to enhance the efficiency and safety of robot navigation, providing a practical solution for remote supervision in challenging environments.

Funder

Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3