Data driven machine learning prognostics of buckling failure modes in ballasted railway track
-
Published:2024-04-14
Issue:4
Volume:6
Page:
-
ISSN:3004-9261
-
Container-title:Discover Applied Sciences
-
language:en
-
Short-container-title:Discov Appl Sci
Author:
Wongkaew Watcharapong,Muanyoksakul Wachira,Ngamkhanong Chayut,Sresakoolchai Jessada,Kaewunruen Sakdirat
Abstract
AbstractThis study explores the development and application of a machine learning (ML) approach to predict buckling failure modes in ballasted railway tracks. With the growing demand for safer and more reliable railway systems, the ability to foresee and mitigate track failures is of paramount importance. Our study focuses on harnessing advanced ML algorithms to analyse and interpret complex data sets, aiming to identify potential buckling failures before they occur. The methodology employed involves collecting extensive data from previous advanced numerical studies. Faced with the inadequacy of field data collection on track buckling and the limited availability of data related to track conditions, our study has relied on simulation data for insight and analysis. This data is then processed and analysed using sophisticated ML models, trained to recognise patterns and anomalies indicative of potential buckling failures. A novel aspect of our approach is the integration of environmental factors, acknowledging their significant influence on the likelihood of both snap-through and progressive buckling in railway tracks. We compare the effectiveness of various ML algorithms in accurately predicting these failure modes, evaluating their performance in simulated and real-world scenarios. The findings demonstrate the models' proficiency in identifying early signs of both snap-through and progressive buckling, leading to timely interventions. This capability not only improves railway safety but also aids in efficient maintenance scheduling and asset management. Additionally, a case study in Thailand's railway system demonstrates the model's effectiveness in predicting buckling failures under tropical environmental conditions. This paper contributes a novel perspective to the field of railway infrastructure maintenance. By providing a reliable method for predicting specific buckling failure modes, it paves the way for enhanced operational safety and efficiency in railway networks, particularly in the face of dynamic environmental conditions.
Funder
National Research Council of Thailand
Thailand Science Research and Innovation Fund Chulalongkorn University
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Oslakovic IS. et al. Risk assessment of climate change impacts on railway infrastructure. 2013.
2. Ngamkhanong C, Kaewunruen S, Costa BJA. State-of-the-art review of railway track resilience monitoring. Infrastructures. 2018;3(1):3. https://doi.org/10.3390/infrastructures3010003.
3. Quinn AD, et al. Rail adapt: adapting the railway for the future. A Report for the International Union of Railways (UIC), 2017.
4. Esveld C. Modern railway track, vol. 385. Netherlands: MRT-productions Zaltbommel; 2001.
5. Kish A. On the fundamentals of track lateral resistance. American Railway Engineering and Maintenance of Way Association. 2011.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献