Analysis of 3D crack patterns in a free plate caused by thermal shock using FEM-bifurcation

Author:

Jesch-Weigel Nico,Zielke Reiner,Hofmann Martin,Wallmersperger Thomas

Abstract

AbstractDamage to components made of brittle material due to thermal shock represents a high safety risk. Predicting the degree of damage is therefore very important to avoid catastrophic failure. An energy-based linear elastic fracture mechanics bifurcation analysis using a three-dimensional finite element model is presented here, which allows the determination of crack length and crack spacing for a defined thermal load in a free plate. It is assumed that a hierarchical crack pattern is formed due to cooling penetration. The constant growth of the ideal regular pattern of hexagons can change into a pattern with a different symmetry by slightly changing the cooling conditions. This bifurcation point is determined by the second derivative of the mechanical potential with respect to the geometry of the crack front. The very high computational effort for the second derivative is reduced by describing the three-dimensional crack front with a limited number of Fourier coefficients. A one-dimensional transient temperature field at a sufficient distance from the plate edge is assumed. For alumina, the crack length and crack spacing curves are computed for different quenching temperatures and heat transfer coefficients. The corresponding final crack lengths are also calculated as a measure of damage. Comparison with a two-dimensional model confirms the expected 1/2 difference in crack spacing. Data from thermal shock experiments are also presented. However, due to the cracks caused by the strong cooling at the edge, these correspond to the results of the two-dimensional model.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Modeling and Simulation,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3