Skip to main content

Advertisement

Log in

Influence on marginal bone levels at implants equipped with blades aiming to control the lateral pressure on the cortical bone. An experimental study in dogs

  • Research
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Background

To avoid cortical compression, several implant systems have included in the protocol dedicated drills aimed at widening the cortical region of osteotomy. However, the manual execution of this operation does not guarantee the necessary precision. Hence, the present study aimed to determine the optimal size of the recipient site at the level of the alveolar crest in relation to the size of the coronal region of the implant to achieve the best healing result.

Materials and methods

Blades of different diameters were incorporated into the coronal part of the implant to prepare the cortical region of the mandibular alveolar bone crest in different dimensions in relation to the collar of the implant. The differences in diameter of the blades in relation to the collar of the implant were as follows: one control group, -175 μm, and three test groups, 0 μm, + 50 μm, or + 200 μm.

Results

The marginal bone loss (MBL) at the buccal aspect was 0.7 mm, 0.5 mm, 0.2 mm, and 0.7 mm in the − 175 μm, 0.0 μm, + 50 μm, + 200 μm groups, respectively. The differences were statistically significant between group + 50 μm and control group − 175 μm (p = 0.019), and between + 50 μm and + 200 μm (p < 0.01) groups. The level of osseointegration at the buccal aspect was more coronally located in the test groups than in the control group, whereas the bone-to-implant contact percentage was higher in the + 50 μm and + 200 μm groups. However, these differences were not statistically significant.

Conclusions

The lowest bone crest resorption and highest levels of osseointegration were observed in the 0.0 μm and + 50 μm groups. The cortical region where the blades had performed their cutting action showed regular healing with perfect hard and soft tissues sealing in all the groups. Cortical blades gathered bone particles, particularly in the + 200 μm group, which were incorporated into the newly formed bone. The results from the present experiment provide support to the use of blades that produce a marginal gap of 50 μm after implant insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data is available following a reasonable request.

References

  1. Frigério PB, Gomes-Ferreira PHS, de Souza Batista FR, Moura J, Rangel Garcia Júnior I, Botticelli D, Lisboa-Filho PN, Okamoto R (2021) Effect of topical PTH 1–34 functionalized to Biogran® in the process of alveolar repair in rats submitted to Orchiectomy. Mater (Basel) 15(1):207. https://doi.org/10.3390/ma15010207PMID: 35009347; PMCID: PMC8746260

    Article  ADS  CAS  Google Scholar 

  2. Hanawa T (2019) Titanium-tissue interface reaction and its control with Surface Treatment. Front Bioeng Biotechnol 7:170. https://doi.org/10.3389/fbioe.2019.00170PMID: 31380361; PMCID: PMC6650641

    Article  PubMed  PubMed Central  Google Scholar 

  3. López-Valverde N, Aragoneses J, López-Valverde A, Quispe-López N, Rodríguez C, Aragoneses JM (2022) Effectiveness of biomolecule-based bioactive surfaces, on osseointegration of titanium dental implants: a systematic review and me-ta-analysis of in vivo studies. Front Bioeng Biotechnol 10:986112. https://doi.org/10.3389/fbioe.2022.986112PMID: 36225604; PMCID: PMC9548556

    Article  PubMed  PubMed Central  Google Scholar 

  4. Musskopf ML, Finger Stadler A, Wikesjö UM, Susin C (2022) The minipig intraoral dental implant model: a systematic review and meta-analysis. PLoS ONE 17(2):e0264475. https://doi.org/10.1371/journal.pone.0264475PMID: 35226690; PMCID: PMC8884544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Damerau JM, Bierbaum S, Wiedemeier D, Korn P, Smeets R, Jenny G, Nadalini J, Stadlinger B (2022) A systematic review on the effect of inorganic surface coatings in large animal models and meta-analysis on tricalcium phosphate and hydroxyapatite on periimplant bone formation. J Biomed Mater Res B Appl Biomater 110(1):157–175. https://doi.org/10.1002/jbm.b.34899Epub 2021 Jul 16. PMID: 34272804; PMCID: PMC9292919

    Article  CAS  PubMed  Google Scholar 

  6. Almassri HNS, Ma Y, Dan Z, Ting Z, Cheng Y, Wu X (2020) Implant stability and survival rates of a hydrophilic versus a conventional sandblasted, acid-etched implant surface: Systematic review and meta-analysis. J Am Dent Assoc. 151(6):444–453. doi: 10.1016/j.adaj.2020.03.002. PMID: 32450983

  7. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 20 Suppl 4:172 – 84. https://doi.org/10.1111/j.1600-0501.2009.01775.x. PMID: 19663964

  8. Wennerberg A, Albrektsson T, Chrcanovic B (2018) Long-term clinical outcome of implants with different surface modifications. Eur J Oral Implantol. 11 Suppl 1:S123-S136. PMID: 30109304

  9. Sigilião Celles CA, Ferreira I, Valente MDLDC, Dos Reis AC (2023) Osseointegration in relation to drilling speed in the preparation of dental implants sites: A systematic review. J Prosthet Dent. Apr 3:S0022-3913(23)00138-5. https://doi.org/10.1016/j.prosdent.2023.03.004. Epub ahead of print. PMID: 37019748

  10. Yu X, Chang C, Guo W, Wu Y, Zhou W, Yu D (2022) Primary implant stability based on alternative site preparation techniques: A systematic review and meta-analysis. Clin Implant Dent Relat Res. 24(5):580–590. https://doi.org/10.1111/cid.13127. Epub 2022 Aug 11. PMID: 35950637

  11. Antonacci D, Del Fabbro M, Bollero P, Stocchero M, Jinno Y, Canullo L (2023) Clinical effects of conventional and underprepared drilling preparation of the implant site based on bone density: a systematic review and meta-regression. J Prosthodont Res 67(1):23–34. https://doi.org/10.2186/jpr.JPR_D_21_00275Epub 2022 Mar 24. PMID: 35321991

    Article  PubMed  Google Scholar 

  12. Tretto PHW, Fabris V, Cericato GO, Sarkis-Onofre R, Bacchi A (2019) Does the instrument used for the implant site preparation influence the bone-implant interface? A systematic review of clinical and animal studies. Int J Oral Maxillofac Surg 48(1):97–107 Epub 2018 Apr 25. PMID: 29703665

    Article  CAS  PubMed  Google Scholar 

  13. Chauhan CJ, Shah DN, Sutaria FB Various bio-mechanical factors affecting heat generation during osteotomy preparation: A systematic review. Indian J Dent Res. 2018 Jan-Feb;29(1):81–92. https://doi.org/10.4103/ijdr.IJDR_729_16. PMID: 29442092

  14. Donati M, Botticelli D, La Scala V, Tomasi C, Berglundh T (2013) Effect of immediate functional loading on osseointegration of implants used for single tooth replacement. A human histological study. Clin Oral Implants Res 24(7):738–745. https://doi.org/10.1111/j.1600-0501.2012.02479.xEpub 2012 Apr 30. PMID: 22540676

    Article  PubMed  Google Scholar 

  15. Yu X, Teng F, Zhao A, Wu Y, Yu D (2022) Effects of post-extraction alveolar ridge preservation, versus immediate implant placement: a systematic review and meta-analysis. J Evid Based Dent Pract 22(3):101734. https://doi.org/10.1016/j.jebdp.2022.101734Epub 2022 Apr 29. PMID: 36162892

    Article  PubMed  Google Scholar 

  16. Amid R, Kadkhodazadeh M, Moscowchi A (2023) Immediate implant placement in compromised sockets: a systematic review and meta-analysis. J Prosthet Dent 130(3):307–317. https://doi.org/10.1016/j.prosdent.2021.09.025Epub 2021 Nov 10. PMID: 34772483

    Article  PubMed  Google Scholar 

  17. Eini E, Yousefimanesh H, Ashtiani AH, Saki-Malehi A, Olapour A, Rahim F (2022) Comparing success of immediate versus delay loading of implants in fresh sockets: a systematic review and meta-analysis. Oral Maxillofac Surg 26(2):185–194. https://doi.org/10.1007/s10006-021-00983-7Epub 2021 Jul 12. PMID: 34251545

    Article  PubMed  Google Scholar 

  18. Araújo MG, Sukekava F, Wennström JL, Lindhe J (2005) Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J Clin Periodontol. ;32(6):645 – 52. https://doi.org/10.1111/j.1600-051X.2005.00726.x. PMID: 15882225

  19. Botticelli D, Berglundh T, Lindhe J (2004) Hard-tissue alterations following immediate implant placement in extraction sites. J Clin Periodontol. ;31(10):820-8. https://doi.org/10.1111/j.1600-051X.2004.00565.x. PMID: 15367183

  20. Krawiec M, Olchowy C, Kubasiewicz-Ross P, Hadzik J, Dominiak M Role of implant loading time in the prevention of marginal bone loss after implant-supported restorations: A targeted review. Dent Med Probl. 2022 Jul-Sep;59(3):475–481. https://doi.org/10.17219/dmp/150111. PMID: 35611847

  21. Zhao G, Zhou Y, Shi S, Liu X, Zhang S, Song Y (2022) Long-term clinical outcomes of immediate loading versus non-immediate loading in single-implant restorations: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 51(10):1345–1354 Epub 2022 Apr 13. PMID: 35430123

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Sanchez R, Dopico J, Kalemaj Z, Buti J, Pardo Zamora G, Mardas N (2022) Comparison of clinical outcomes of immediate versus delayed placement of dental implants: a systematic review and meta-analysis. Clin Oral Implants Res 33(3):231–277. https://doi.org/10.1111/clr.13892Epub 2022 Jan 28. PMID: 35044012

    Article  PubMed  Google Scholar 

  23. Francisco H, Marques D, Pinto C, Aiquel L, Caramês J (2021) Is the timing of implant placement and loading influencing esthetic outcomes in single-tooth implants?-A systematic review. Clin Oral Implants Res. ;32 Suppl 21:28–55. https://doi.org/10.1111/clr.13811. PMID: 34642985

  24. Donos N, Asche NV, Akbar AN, Francisco H, Gonzales O, Gotfredsen K, Haas R, Happe A, Leow N, Navarro JM, Ornekol T, Payer M, Renouard F, Schliephake H (2021) Impact of timing of dental implant placement and loading: Summary and consensus statements of group 1-The 6th EAO Consensus Conference 2021. Clin Oral Implants Res. ;32 Suppl 21:85–92. https://doi.org/10.1111/clr.13809. PMID: 34642977

  25. Pardal-Peláez B, Flores-Fraile J, Pardal-Refoyo JL, Montero J (2021) Implant loss and crestal bone loss in early loading versus delayed and immediate loading in edentulous mandibles. A systematic review and meta-analysis. J Clin Exp Dent 13(4):e397–e405. https://doi.org/10.4317/jced.57966PMID: 33841740; PMCID: PMC8020311

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cesaretti G, Botticelli D, Renzi A, Rossi M, Rossi R, Lang NP (2016) Radiographic evaluation of immediately loaded implants supporting 2–3 units fixed bridges in the posterior maxilla: a 3-year follow-up prospective randomized controlled multicenter clinical study. Clin Oral Implants Res 27(4):399–405. https://doi.org/10.1111/clr.12565Epub 2015 Feb 9. PMID: 25664701

    Article  PubMed  Google Scholar 

  27. Rea M, Lang NP, Ricci S, Mintrone F, González González G, Botticelli D (2015) Healing of implants installed in over- or un-der-prepared sites–an experimental study in dogs. Clin Oral Implants Res 26(4):442–446. https://doi.org/10.1111/clr.12390Epub 2014 Mar 31. PMID: 24684411

    Article  PubMed  Google Scholar 

  28. Kotsu M, Urbizo Velez J, Bengazi F, Tumedei M, Fujiwara S, Kato S, Botticelli D (2021) Healing at implants installed from ~ 70- to < 10-Ncm insertion torques: an experimental study in dogs. Oral Maxillofac Surg 25(1):55–64. https://doi.org/10.1007/s10006-020-00890-3Epub 2020 Jul 29. PMID: 32725574

    Article  PubMed  Google Scholar 

  29. Putra RH, Cooray U, Nurrachman AS, Yoda N, Judge R, Putri DK, Astuti ER Radiographic alveolar bone assessment in correlation with primary implant stability: A systematic review and meta-analysis. Clin Oral Implants Res. 2023 Oct 15. https://doi.org/10.1111/clr.14195. Epub ahead of print. PMID: 37840388

  30. Gaikwad AM, Joshi AA, Nadgere JB (2022) Biomechanical and histomorphometric analysis of endosteal implants placed by using the osseodensification technique in animal models: a systematic review and meta-analysis. J Prosthet Dent 127(1):61–70 Epub 2020 Oct 31. PMID: 33139057

    Article  CAS  PubMed  Google Scholar 

  31. Palaskar JN, Joshi N, Shah PM, Gullapalli P, Vinay V (2020 Jan-Mar) Influence of different implant placement techniques to improve primary implant stability in low-density bone: a systematic review. J Indian Prosthodont Soc 20(1):11–16. https://doi.org/10.4103/jips.jips_244_18Epub 2020 Jan 27. PMID: 32089594; PMCID: PMC7008617

  32. Ikar M, Grobecker-Karl T, Karl M, Steiner C (2020) Mechanical stress during implant surgery and its effects on marginal bone: a literature review. Quintessence Int. ;51(2):142–150. https://doi.org/10.3290/j.qi.a43664. PMID: 31781692

  33. Al-Sabbagh M, Eldomiaty W, Khabbaz Y (2019) Can Osseointegration Be Achieved Without Primary Stability? Dent Clin North Am. ;63(3):461–473. https://doi.org/10.1016/j.cden.2019.02.001. Epub 2019 Apr 15. PMID: 31097138.

  34. Lages FS, Douglas-de Oliveira DW, Costa FO (2018) Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: a systematic review. Clin Implant Dent Relat Res 20(1):26–33. https://doi.org/10.1111/cid.12565Epub 2017 Dec 1. PMID: 29194944

    Article  PubMed  Google Scholar 

  35. Stocchero M, Toia M, Cecchinato D, Becktor JP, Coelho PG, Jimbo R Biomechanical, Biologic, and Clinical Outcomes of Undersized Implant Surgical Preparation: A Systematic Review. Int J Oral Maxillofac Implants. 2016 Nov/Dec;31(6):1247–1263. https://doi.org/10.11607/jomi.5340. PMID: 27861649

  36. Duyck J, Corpas L, Vermeiren S, Ogawa T, Quirynen M, Vandamme K, Jacobs R, Naert I (2010) Histological, histomorphometrical, and radiological evaluation of an experimental implant design with a high insertion torque. Clin Oral Implants Res. ;21(8):877 – 84. doi: 10.1111/j.1600-0501.2010.01895.x. Epub 2010 Apr 30. PMID: 20528892

  37. Canullo L, Iacono R, Pires Godoy E, Punzo A, Cavicchia A, Gianfreda F, Bollero P (2022) Hybrid funnel technique: a Novel Approach for Implant Site Preparation: a pilot study. Dent J (Basel) 10(9):157. https://doi.org/10.3390/dj10090157PMID: 36135152; PMCID: PMC9497956

    Article  PubMed  Google Scholar 

  38. Gehrke SA, Júnior JA, Treichel TLE, do Prado TD, Dedavid BA, de Aza PN (2022) Effects of insertion torque values on the marginal bone loss of dental implants installed in sheep mandibles. Sci Rep 12(1):538 PMID: 35017552; PMCID: PMC8752839

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roca-Millan E, González-Navarro B, Domínguez-Mínger J, Marí-Roig A, Jané-Salas E, López-López J (2020) Implant insertion torque and marginal bone loss: a systematic review and meta-analysis. Int J Oral Implantol (Berl) 13(4):345–353 PMID: 33491366

    PubMed  Google Scholar 

  40. Pantani F, Botticelli D, Garcia IR Jr, Salata LA, Borges GJ, Lang NP (2010) Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs. Clin Oral Implants Res. ;21(11):1264-70. https://doi.org/10.1111/j.1600-0501.2010.01941.x. PMID: 20626423

  41. Skalak R, Zhao Y (2000) Similarity of stress distribution in bone for various implant surface roughness heights of similar form. Clin Implant Dent Relat Res. ;2(4):225 – 30. https://doi.org/10.1111/j.1708-8208.2000.tb00121.x. PMID: 11359282

  42. Coyac BR, Leahy B, Salvi G, Hoffmann W, Brunski JB, Helms JA (2019) A preclinical model links osseo-densification due to misfit and osseo-destruction due to stress/strain. Clin Oral Implants Res. ;30(12):1238–1249. https://doi.org/10.1111/clr.13537. Epub 2019 Oct 11. PMID: 31520494

  43. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. ;41(4):1149-60. https://doi.org/10.3758/BRM.41.4.1149. PMID: 19897823

  44. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. ;39(2):175 – 91. https://doi.org/10.3758/bf03193146. PMID: 17695343

  45. Monje A, Chappuis V, Monje F, Muñoz F, Wang HL, Urban IA, Buser D The critical peri-implant buccal bone Wall Thickness Revisited: an experimental study in the Beagle Dog. Int J Oral Maxillofac Implants 2019 November/December ;34(6):1328–1336. https://doi.org/10.11607/jomi.7657. Epub 2019 Sep 18. PMID: 31532826.

  46. Tabassum A, Walboomers XF, Wolke JG, Meijer GJ, Jansen JA (2010) Bone particles and the undersized surgical technique. J Dent Res 89(6):581–586. https://doi.org/10.1177/0022034510363263Epub 2010 Mar 8. PMID: 20212102

    Article  CAS  PubMed  Google Scholar 

  47. Alghamdi H, Anand PS, Anil S (2011) Undersized implant site preparation to enhance primary implant stability in poor bone density: a prospective clinical study. J Oral Maxillofac Surg. ;69(12):e506-12. https://doi.org/10.1016/j.joms.2011.08.007. PMID: 22117707

  48. Toia M, Stocchero M, Cecchinato F, Corrà E, Jimbo R, Cecchinato D Clinical Considerations of Adapted Drilling Protocol by Bone Quality Perception. Int J Oral Maxillofac Implants. 2017 Nov/Dec;32(6):1288–1295. https://doi.org/10.11607/jomi.5881. PMID: 29140373

  49. Sommer M, Zimmermann J, Grize L, Stübinger S (2020) Marginal bone loss one year after implantation: a systematic review of different loading protocols. Int J Oral Maxillofac Surg 49(1):121–134. https://doi.org/10.1016/j.ijom.2019.03.965Epub 2019 Jun 27. PMID: 31255443

    Article  CAS  PubMed  Google Scholar 

  50. Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. ;14(3):251 – 62. https://doi.org/10.1034/j.1600-0501.2003.00972.x. PMID: 12755774

  51. Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res. ;15(4):381 – 92. https://doi.org/10.1111/j.1600-0501.2004.01082.x. PMID: 15248872

  52. Bosshardt DD, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Lang NP (2011) The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res. ;22(4):357 – 64. https://doi.org/10.1111/j.1600-0501.2010.02107.x. PMID: 21561477

  53. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD (2011) Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. ;22(4):349 – 56. https://doi.org/10.1111/j.1600-0501.2011.02172.x. PMID: 21561476

  54. Donos N, Hamlet S, Lang NP, Salvi GE, Huynh-Ba G, Bosshardt DD, Ivanovski S (2011) Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res. ;22(4):365 – 72. https://doi.org/10.1111/j.1600-0501.2010.02113.x. PMID: 21561478

  55. Rossi F, Lang NP, De Santis E, Morelli F, Favero G, Botticelli D (2014) Bone-healing pattern at the surface of titanium implants: an experimental study in the dog. Clin Oral Implants Res. ;25(1):124 – 31. https://doi.org/10.1111/clr.12097. Epub 2013 Jan 4. PMID: 23289845

  56. Caroprese M, Lang NP, Rossi F, Ricci S, Favero R, Botticelli D (2017) Morphometric evaluation of the early stages of healing at cortical and marrow compartments at titanium implants: an experimental study in the dog. Clin Oral Implants Res 28(9):1030–1037. https://doi.org/10.1111/clr.12913Epub 2016 Jun 28. PMID: 27354261

    Article  PubMed  Google Scholar 

  57. Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949 PMID: 12959168

    Article  PubMed  Google Scholar 

  58. Rossi F, Botticelli D, Pantani F, Pereira FP, Salata LA, Lang NP (2012) Bone healing pattern in surgically created circumferential defects around submerged implants: an experimental study in dog. Clin Oral Implants Res 23(1):41–48. https://doi.org/10.1111/j.1600-0501.2011.02170.xEpub 2011 Mar 28. PMID: 21443594

    Article  PubMed  Google Scholar 

  59. Botticelli D, Berglundh T, Buser D, Lindhe J (2003) Appositional bone formation in marginal defects at implants. Clin Oral Implants Res. ;14(1):1–9. https://doi.org/10.1034/j.1600-0501.2003.140101.x. PMID: 12562359

  60. Botticelli D, Berglundh T, Buser D, Lindhe J (2003) The jumping distance revisited: An experimental study in the dog. Clin Oral Implants Res. ;14(1):35–42. https://doi.org/10.1034/j.1600-0501.2003.140105.x. PMID: 12562363

  61. Akimoto K, Becker W, Persson R, Baker DA, Rohrer MD, O’Neal RB (1999 May-Jun) Evaluation of titanium implants placed into simulated extraction sockets: a study in dogs. Int J Oral Maxillofac Implants 14(3):351–360 PMID: 10379108

  62. Botticelli D, Berglundh T, Persson LG, Lindhe J (2005) Bone regeneration at implants with turned or rough surfaces in self-contained defects. An experimental study in the dog. J Clin Periodontol. ;32(5):448 – 55. https://doi.org/10.1111/j.1600-051X.2005.00693.x. PMID: 15842258

  63. Sivolella S, Bressan E, Salata LA, Urrutia ZA, Lang NP, Botticelli D (2012) Osteogenesis at implants without primary bone contact - an experimental study in dogs. Clin Oral Implants Res 23(5):542–549. https://doi.org/10.1111/j.1600-0501.2012.02423.xEpub 2012 Feb 15. PMID: 22335282

    Article  PubMed  Google Scholar 

  64. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. ;83(7):529 – 33. https://doi.org/10.1177/154405910408300704. PMID: 15218041

  65. Araújo MG, Wennström JL, Lindhe J (2006) Modeling of the buccal and lingual bone walls of fresh extraction sites following implant installation. Clin Oral Implants Res. ;17(6):606 – 14. https://doi.org/10.1111/j.1600-0501.2006.01315.x. PMID: 17092217

Download references

Acknowledgements

The implants were provided free of charge by Leader Medica s.r.l, Padova, PD, Italy. We thank Marco Guzzo, Brenta Engineering, Noventa Padovana, PD, Italy for the technical support.

Funding

The study was supported by ARDEC Academy, Rimini, Italy, and Leader Medica s.r.l, Padova, PD, Italy.

Author information

Authors and Affiliations

Authors

Contributions

M.K. contributed to the conceptualization, methodology, formal analysis, writing the original draft and reviewing the final version of the article. M.F. contributed to the conceptualization, methodology, and investigation. F.M.M.G. contributed to the investigation, and animal care. A.A. contributed to the formal analysis and reviewing and editing the article. K.A.A.A. contributed to writing the original draft and project administration. E.F.D.R. contributed to histological measurements and formal analysis. D.B. contributed to conceptualization, methodology, formal analysis, data curation, writing the original draft and reviewing and editing the article, project administration and funding acquisition. All authors have read and approved the article before submission for publication.

Corresponding author

Correspondence to Daniele Botticelli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanayama, M., Ferri, M., Guzon, F.M.M. et al. Influence on marginal bone levels at implants equipped with blades aiming to control the lateral pressure on the cortical bone. An experimental study in dogs. Oral Maxillofac Surg (2024). https://doi.org/10.1007/s10006-024-01228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10006-024-01228-z

Keywords

Navigation