ID2 promotes tumor progression and metastasis in thyroid cancer

Author:

Deng Zhongming,Xu Min,Ding Zhenghua,Kong Jianqiao,Liu Juanjuan,Zhang Zelin,Cao Ping

Abstract

Abstract Background Inhibitor of DNA Binding 2 (ID2) plays a crucial role in tumor cell proliferation, invasion, metastasis, and stemness. Aberrant ID2 expression is associated with poor prognosis in various cancers. However, the specific function of ID2 in thyroid cancer remain unclear. Method The TCGA database were utilized to explore the clinical relevance of ID2 in cancer. GO, KEGG, and TIMER were employed to predict the potential roles of ID2 in cancer. Functional analysis, including CCK-8, colony formation, transwell, wound healing, and sphere formation experiments, were conducted to determine the biological functions of ID2 in human cancers. Western blot (WB), RT-qPCR, and immunohistochemical (IHC) analyses were used to investigate the relationship between ID2 and downstream targets. Results Our study revealed significant overexpression of ID2 in various malignant tumor cells. Knocking ID2 significantly inhibited cancer cell proliferation and invasion, while overexpressing ID2 enhanced these capabilities. Additionally, ID2 mediates resistance of cancer cells to protein kinase B (or Akt) inhibitions. Further WB and IHC experiments indicated that ID2 promotes the phosphorylation activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, thereby upregulating the expression of downstream proliferation, epithelial-mesenchymal transition (EMT), and stemness-related markers. Conclusion We found that ID2 significantly promotes thyroid cancer cell proliferation, migration, EMT, and stemness through the PI3K/Akt pathway. Moreover, ID2 plays a crucial role in regulating cancer immune responses. It may serve as a potential biomarker for enhancing the efficacy of chemotherapy, targeted therapy, and immunotherapy against cancer.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3