Skip to main content
Log in

Mitochondrial Dysfunction due to Novel COQ8A Variation with Poor Response to CoQ10 Treatment: A Comprehensive Study and Review of Literatures

  • RESEARCH
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient’s muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype–phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Montero R, Pineda M, Aracil A, Vilaseca MA, Briones P, Sánchez-Alcázar JA, Navas P, Artuch R. Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. Cerebellum. 2007;6:118–22. https://doi.org/10.1080/14734220601021700.

    Article  CAS  PubMed  Google Scholar 

  2. Quinzii CM, López LC, Naini A, DiMauro S, Hirano M. Human CoQ10 deficiencies. BioFactors. 2008;32:113–8. https://doi.org/10.1002/biof.5520320113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laredj LN, Licitra F, Puccio HM. The molecular genetics of coenzyme Q biosynthesis in health and disease. Biochimie. 2014;100:78–87. https://doi.org/10.1016/j.biochi.2013.12.006.

    Article  CAS  PubMed  Google Scholar 

  4. Caglayan AO, Gumus H, Sandford E, Kubisiak TL, Ma Q, Ozel AB, Per H, Li JZ, Shakkottai VG, Burmeister M. COQ4 Mutation Leads to Childhood-Onset Ataxia Improved by CoQ10 Administration. Cerebellum. 2019;18:665–9. https://doi.org/10.1007/s12311-019-01011-x.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34. https://doi.org/10.1126/science.1075762.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Lagier-Tourenne C, Tazir M, López LC, Quinzii CM, Assoum M, Drouot N, Busso C, Makri S, Ali-Pacha L, Benhassine T, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;82:661–72. https://doi.org/10.1016/j.ajhg.2007.12.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Asquith CRM, Murray NH, Pagliarini DJ. ADCK3/COQ8A: the choice target of the UbiB protein kinase-like family. Nat Rev Drug Discov. 2019;18:815. https://doi.org/10.1038/d41573-019-00158-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stefely JA, Reidenbach AG, Ulbrich A, Oruganty K, Floyd BJ, Jochem A, Saunders JM, Johnson IE, Minogue CE, Wrobel RL, et al. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. Mol Cell. 2015;57:83–94. https://doi.org/10.1016/j.molcel.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  9. Paprocka J, Nowak M, Chuchra P, Śmigiel R. COQ8A-Ataxia as a Manifestation of Primary Coenzyme Q Deficiency. Metabolites. 2022;12:955. https://doi.org/10.3390/metabo12100955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shalata A, Edery M, Habib C, Genizi J, Mahroum M, Khalaily L, Assaf N, Segal I, Abed El Rahim H, Shapira H, et al. Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem Res. 2019;44:2372–84. https://doi.org/10.1007/s11064-019-02786-5.

    Article  CAS  PubMed  Google Scholar 

  11. Manolaras I, Del Bondio A, Griso O, Reutenauer L, Eisenmann A, Habermann BH, Puccio H. Mitochondrial dysfunction and calcium dysregulation in COQ8A-ataxia Purkinje neurons are rescued by CoQ10 treatment. Brain. 2023;146:3836–50. https://doi.org/10.1093/brain/awad099.

    Article  PubMed  Google Scholar 

  12. Ji K, Zheng J, Sun B, Liu F, Shan J, Li D, Luo YB, Zhao Y, Yan C. Novel mitochondrial C15620A variant may modulate the phenotype of mitochondrial G11778A mutation in a Chinese family with Leigh syndrome. Neuromolecular Med. 2014;16:119–26. https://doi.org/10.1007/s12017-013-8264-8.

    Article  CAS  PubMed  Google Scholar 

  13. Rittié L, Fisher GJ. Isolation and culture of skin fibroblasts. Methods Mol Med. 2005;117:83–98. https://doi.org/10.1385/1-59259-940-0:083.

    Article  PubMed  Google Scholar 

  14. Qian W, Kumar N, Roginskaya V, Fouquerel E, Opresko PL, Shiva S, Watkins SC, Kolodieznyi D, Bruchez MP, Van Houten B. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci U S A. 2019;116:18435–44. https://doi.org/10.1073/pnas.1910574116.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao X, Cui L, Xiao Y, Mao Q, Aishanjiang M, Kong W, Liu Y, Chen H, Hong F, Jia Z, et al. Hypertension-associated mitochondrial DNA 4401A>G mutation caused the aberrant processing of tRNAMet, all 8 tRNAs and ND6 mRNA in the light-strand transcript. Nucleic Acids Res. 2019;47:10340–56. https://doi.org/10.1093/nar/gkz742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Lu Y, Cheng J. Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics. 2020;10:5829–44. https://doi.org/10.7150/thno.44051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinson KM, Janes MS, Beckman JS. The selective detection of mitochondrial superoxide by live cell imaging. Nat Protoc. 2008;3:941–7. https://doi.org/10.1038/nprot.2008.56.

    Article  CAS  PubMed  Google Scholar 

  18. Sivandzade F, Bhalerao A, Cucullo L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 2019;9(1):e3128. https://doi.org/10.21769/BioProtoc.3128.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;82:623–30. https://doi.org/10.1016/j.ajhg.2007.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reidenbach AG, Kemmerer ZA, Aydin D, Jochem A, McDevitt MT, Hutchins PD, Stark JL, Stefely JA, Reddy T, Hebert AS, et al. Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family. Cell Chem Biol. 2018;25:154-165.e111. https://doi.org/10.1016/j.chembiol.2017.11.001.

    Article  CAS  PubMed  Google Scholar 

  21. Stefely JA, Licitra F, Laredj L, Reidenbach AG, Kemmerer ZA, Grangeray A, Jaeg-Ehret T, Minogue CE, Ulbrich A, Hutchins PD, et al. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity. Mol Cell. 2016;63:608–20. https://doi.org/10.1016/j.molcel.2016.06.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barca E, Musumeci O, Montagnese F, Marino S, Granata F, Nunnari D, Peverelli L, DiMauro S, Quinzii CM, Toscano A. Cerebellar ataxia and severe muscle CoQ10 deficiency in a patient with a novel mutation in ADCK3. Clin Genet. 2016;90:156–60. https://doi.org/10.1111/cge.12742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19:574–94. https://doi.org/10.1111/1541-4337.12539.

    Article  CAS  PubMed  Google Scholar 

  24. Mignot C, Apartis E, Durr A, Marques Lourenço C, Charles P, Devos D, Moreau C, de Lonlay P, Drouot N, Burglen L, et al. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet J Rare Dis. 2013;8:173. https://doi.org/10.1186/1750-1172-8-173.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49:2231–7. https://doi.org/10.1016/j.jacc.2007.02.049.

    Article  CAS  PubMed  Google Scholar 

  26. Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, et al. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol. 2020;88:251–63. https://doi.org/10.1002/ana.25751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D. Heterozygous Mutations in the ADCK3 Gene in Siblings with Cerebellar Atrophy and Extreme Phenotypic Variability. JIMD Rep. 2014;12:103–7. https://doi.org/10.1007/8904_2013_251.

    Article  PubMed  Google Scholar 

  28. Hikmat O, Tzoulis C, Knappskog PM, Johansson S, Boman H, Sztromwasser P, Lien E, Brodtkorb E, Ghezzi D, Bindoff LA. ADCK3 mutations with epilepsy, stroke-like episodes and ataxia: a POLG mimic? Eur J Neurol. 2016;23:1188–94. https://doi.org/10.1111/ene.13003.

    Article  CAS  PubMed  Google Scholar 

  29. Horvath R, Czermin B, Gulati S, Demuth S, Houge G, Pyle A, Dineiger C, Blakely EL, Hassani A, Foley C, et al. Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry. 2012;83:174–8. https://doi.org/10.1136/jnnp-2011-301258.

    Article  PubMed  Google Scholar 

  30. Jacobsen JC, Whitford W, Swan B, Taylor J, Love DR, Hill R, Molyneux S, George PM, Mackay R, Robertson SP, et al. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q(10) Deficiency in a Female Sib-Pair. JIMD Rep. 2018;42:31–6. https://doi.org/10.1007/8904_2017_73.

    Article  PubMed  Google Scholar 

  31. Chang A, Ruiz-Lopez M, Slow E, Tarnopolsky M, Lang AE, Munhoz RP. ADCK3-related Coenzyme Q10 Deficiency: A Potentially Treatable Genetic Disease. Mov Disord Clin Pract. 2018;5:635–9. https://doi.org/10.1002/mdc3.12667.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schirinzi T, Favetta M, Romano A, Sancesario A, Summa S, Minosse S, Zanni G, Castelli E, Bertini E, Petrarca M, et al. One-year outcome of coenzyme Q10 supplementation in ADCK3 ataxia (ARCA2). Cerebellum Ataxias. 2019;6:15. https://doi.org/10.1186/s40673-019-0109-2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uccella S, Pisciotta L, Severino M, Bertini E, Giacomini T, Zanni G, Prato G, De Grandis E, Nobili L, Mancardi MM. Photoparoxysmal response in ADCK3 autosomal recessive ataxia: a case report and literature review. Epileptic Disord. 2021;23:153–60. https://doi.org/10.1684/epd.2021.1243.

    Article  PubMed  Google Scholar 

  34. Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, Labauge P, Ewenczyk C, Ding J, Gibbs JR, et al. Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes. JAMA Neurol. 2018;75:591–9. https://doi.org/10.1001/jamaneurol.2017.5121.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Ashizawa T, Peng D. Primary coenzyme Q10 deficiency due to COQ8A gene mutations. Mol Genet Genomic Med. 2020;8:e1420. https://doi.org/10.1002/mgg3.1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hojabri M, Gilani A, Irilouzadian R, Nejad Biglari H, Sarmadian R. Adolescence Onset Primary Coenzyme Q10 Deficiency With Rare CoQ8A Gene Mutation: A Case Report and Review of Literature. Clin Med Insights Case Rep. 2023;16:11795476231188060. https://doi.org/10.1177/11795476231188061.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Galosi S, Barca E, Carrozzo R, Schirinzi T, Quinzii CM, Lieto M, Vasco G, Zanni G, Di Nottia M, Galatolo D, et al. Dystonia-Ataxia with early handwriting deterioration in COQ8A mutation carriers: A case series and literature review. Parkinsonism Relat Disord. 2019;68:8–16. https://doi.org/10.1016/j.parkreldis.2019.09.015.

    Article  PubMed  Google Scholar 

  38. Cotta A, Alston CL, Baptista-Junior S, Paim JF, Carvalho E, Navarro MM, Appleton M, Ng YS, Valicek J, da-Cunha-Junior AL, et al. Early-onset coenzyme Q10 deficiency associated with ataxia and respiratory chain dysfunction due to novel pathogenic COQ8A variants, including a large intragenic deletion. Jimd Rep. 2020;54:45–53. https://doi.org/10.1002/jmd2.12107.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ehrenhaus Masotta N, Höcht C, Contin M, Lucangioli S, Rojas AM, Tripodi VP. Bioavailability of coenzyme Q(10) loaded in an oleogel formulation for oral therapy: Comparison with a commercial-grade solid formulation. Int J Pharm. 2020;582:119315. https://doi.org/10.1016/j.ijpharm.2020.119315.

    Article  CAS  PubMed  Google Scholar 

  40. Auré K, Benoist JF, Ogier de Baulny H, Romero NB, Rigal O, Lombès A. Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology. 2004;63:727–9. https://doi.org/10.1212/01.wnl.0000134607.76780.b2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the patient and his families for contributing samples and providing invaluable clinical information for this study.

Funding

This study was supported by the National Natural Science Foundation of China (No. 82301590, 82071412 and 82171394), China Postdoctoral Science Foundation (2023M742116), Natural Science Foundation of Shandong Province (No. ZR2023QH106), Shandong Provincial Postdoctoral Innovation Talent Support Program (SDBX2022061), Grants from the National Key R&D Program of China (No.2021YFC2700904), People's Benefit Project of Science and Technology in Qingdao (20–3-4–42-nsh, 22–8-7-smjk-1-nsh), and the Taishan Scholars Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

JYW performed the experiments and drafted the manuscript; YL help to designed the study and provide technical assistant; ZHX help some of the experiments; CZY supervised the study; YYZ provide the clinic case; KQJ involved in the critical revision of the manuscript. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuying Zhao or Kunqian Ji.

Ethics declarations

Ethics Approval and Consent to Participate

This study was ethics approval by the medical Ethics Committee of Qilu Hospital.

Consent for Publication

Not applicable.

Patients Consent

Obtained.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lin, Y., Xu, Z. et al. Mitochondrial Dysfunction due to Novel COQ8A Variation with Poor Response to CoQ10 Treatment: A Comprehensive Study and Review of Literatures. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01671-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01671-4

Keywords

Navigation