Abstract
AbstractWe extend to p-uniformly convex spaces tools from the analysis of fixed point iterations in linear spaces. This study is restricted to an appropriate generalization of single-valued, pointwise averaged mappings. Our main contribution is establishing a calculus for these mappings in p-uniformly convex spaces, showing in particular how the property is preserved under compositions and convex combinations. This is of central importance to splitting algorithms that are built by such convex combinations and compositions, and reduces the convergence analysis to simply verifying that the individual components have the required regularity pointwise at fixed points of the splitting algorithms. Our convergence analysis differs from what can be found in the previous literature in that the regularity assumptions are only with respect to fixed points. Indeed we show that, if the fixed point mapping is pointwise nonexpansive at all cluster points, then these cluster points are in fact fixed points, and convergence of the sequence follows. Additionally, we provide a quantitative convergence analysis built on the notion of gauge metric subregularity, which we show is necessary for quantifiable convergence estimates. This allows one for the first time to prove convergence of a tremendous variety of splitting algorithms in spaces with curvature bounded from above.
Funder
Deutscher Akademischer Austauschdienst
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Reference42 articles.
1. Alexandrov, A.D.: A theorem on triangles in a metric space and some of its applications. Trudy Mat. Inst. Steklova 38, 5–23 (1951)
2. Ariza-Ruiz, D., Leuştean, L., López-Acedo, G.: Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc. 366(8), 4299–4322 (2014)
3. Ariza-Ruiz, D., López-Acedo, G., Nicolae, A.: The asymptotic behavior of the composition of firmly nonexpansive mappings. J. Optim. Theory Appl. 167, 409–429 (2015)
4. Aspelmeier, T., Charitha, C., Luke, D.R.: Local linear convergence of the ADMM/Douglas–Rachford algorithms without strong convexity and application to statistical imaging. SIAM J. Imaging Sci. 9(2), 842–868 (2016)
5. Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24(3), 1542–1566 (2014)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献