Electrochemical goniometry: keystone reactivity at the three-phase boundary

Author:

Varley Thomas S.,Lawrence Nathan S.,Wadhawan Jay D.

Abstract

AbstractContact angles of liquid, spherical cap droplets immobilised on an electrode surface and bathed by a fluid are important, quantifiable measures of the liquid/fluid interfacial tension. Optical goniometry, even if computer assisted, suffers when the contact angle is 10° or less. In this work, an alternative method of measurement is considered: electrochemical techniques (voltammetry and chronoamperometry), which rely on the transport of material from within the droplet to the conductive surface. As a result of the reactions that take place at the triple phase boundary, these are demonstrated to provide information on the size and the shape of the droplet, including its contact angle, for the cases when the droplets have a redox analyte and either have a supporting electrolyte, or not. The voltammetric behaviour is seen to change from exhaustive, thin film characteristics, to quasi-steady-state signals as the droplet becomes bigger, or the scan rate becomes larger, or diffusion of the redox material inside the droplet becomes slower. One of the surprising outcomes is that there is a zone of planar diffusion only in the case of the supported droplets, with both the droplet size and its contact angle determining whether this is seen at conventional combinations of scan rates and diffusion coefficients. Experimental data are provided which emphasize key features pertaining to the nature of the redox system and illustrate the facile nature of the contact angle estimation process, albeit to within 10% uncertainty.

Funder

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

Reference104 articles.

1. Shaw DJ (1992) Introduction to colloid and surface chemistry, 4th edn. Butterworth-Heinemann, Oxford

2. Hunter RJ (1993) Introduction to modern colloid science. Oxford University Press, Oxford

3. de Gennes P-G, Brochard-Wyart F, Quere D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York

4. von Baeyer HC (2000) The lotus effect. The Sciences 40:12

5. Stauber JM, Wilson SK, Duffy BR (2015) Evaporation of droplets on strongly hydrophobic substrates. Langmuir 31:3653

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3