Funder
Seagate Technology
National Science Foundation
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference58 articles.
1. Abu-Samah, A., Shahzad, M., Zamai, E., et al. (2015). Failure prediction methodology for improved proactive maintenance using Bayesian approach. IFAC-PapersOnLine, 48(21), 844–851. https://doi.org/10.1016/j.ifacol.2015.09.632
2. Andrews, B., Ramsey, J., & Cooper, G. F. (2018). Scoring Bayesian networks of mixed variables. International Journal of Data Science and Analytics, 6(1), 3–18. https://doi.org/10.1007/s41060-017-0085-7
3. Andrews, B., Ramsey, J., & Cooper, G. F. (2019). Learning high-dimensional directed acyclic graphs with mixed data-types. In The 2019 ACM SIGKDD workshop on causal discovery, PMLR (pp. 4–21). http://proceedings.mlr.press/v104/andrews19a.html.
4. Azadkia, M., & Chatterjee, S. (2021). A simple measure of conditional dependence. The Annals of Statistics, 49(6), 3070–3102. https://doi.org/10.1214/21-AOS2073
5. Barnes, E. A., Samarasinghe, S. M., Ebert-Uphoff, I., et al. (2019). Tropospheric and stratospheric causal pathways between the mjo and nao. Journal of Geophysical Research: Atmospheres, 124(16), 9356–9371. https://doi.org/10.1029/2019JD031024